Method for enhancing knowledge discovered from biological data using a learning machine


Ontology type: sgo:Patent     


Patent Info

DATE

2004-09-07T00:00

AUTHORS

Stephen Barnhill , Isabelle Guyon , Jason Weston

ABSTRACT

A learning machine is used to extract useful information from vast quantities of biological data. The method includes pre-processing of training data and test data to add dimensionality or to identify missing or erroneous data points. The training data is used to train the learning machine after which the success of the training is tested using the test data. The test output is pre-processed to determine whether the knowledge discovered from the pre-processed test data set is desirable. After the training has been confirmed, live biological data can be pre-processed then input into the trained learning machine for extraction of useful information. In the preferred embodiment, the learning machine is one or more support vector machines. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Stephen Barnhill", 
        "type": "Person"
      }, 
      {
        "name": "Isabelle Guyon", 
        "type": "Person"
      }, 
      {
        "name": "Jason Weston", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.96.16.9212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002392246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.11.6428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008522490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010898206", 
          "https://doi.org/10.1038/35000501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35000501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010898206", 
          "https://doi.org/10.1038/35000501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.25.14863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020882317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.12.6745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033514193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.19.9.6355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037469955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.1.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048892448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.271.49.31470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051588417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.6.2811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051630147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.650102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061229999"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-09-07T00:00", 
    "description": "

A learning machine is used to extract useful information from vast quantities of biological data. The method includes pre-processing of training data and test data to add dimensionality or to identify missing or erroneous data points. The training data is used to train the learning machine after which the success of the training is tested using the test data. The test output is pre-processed to determine whether the knowledge discovered from the pre-processed test data set is desirable. After the training has been confirmed, live biological data can be pre-processed then input into the trained learning machine for extraction of useful information. In the preferred embodiment, the learning machine is one or more support vector machines.

", "id": "sg:patent.US-6789069-B1", "keywords": [ "method", "biological data", "machine", "extract useful information", "vast quantity", "training data", "dimensionality", "data point", "success", "output", "Dataset", "input", "extraction", "useful information", "embodiment", "vector machine" ], "name": "Method for enhancing knowledge discovered from biological data using a learning machine", "sameAs": [ "https://app.dimensions.ai/details/patent/US-6789069-B1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:28", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03144.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-6789069-B1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-6789069-B1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-6789069-B1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-6789069-B1'


 

This table displays all metadata directly associated to this object as RDF triples.

78 TRIPLES      14 PREDICATES      40 URIs      24 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-6789069-B1 schema:about anzsrc-for:2746
2 schema:author N480a6fcceaff483cbe66f1e60f7c6dc2
3 schema:citation sg:pub.10.1038/35000501
4 https://doi.org/10.1073/pnas.95.25.14863
5 https://doi.org/10.1073/pnas.96.11.6428
6 https://doi.org/10.1073/pnas.96.12.6745
7 https://doi.org/10.1073/pnas.96.16.9212
8 https://doi.org/10.1073/pnas.96.6.2811
9 https://doi.org/10.1073/pnas.97.1.262
10 https://doi.org/10.1074/jbc.271.49.31470
11 https://doi.org/10.1109/78.650102
12 https://doi.org/10.1126/science.286.5439.531
13 https://doi.org/10.1128/mcb.19.9.6355
14 schema:datePublished 2004-09-07T00:00
15 schema:description <p>A learning machine is used to extract useful information from vast quantities of biological data. The method includes pre-processing of training data and test data to add dimensionality or to identify missing or erroneous data points. The training data is used to train the learning machine after which the success of the training is tested using the test data. The test output is pre-processed to determine whether the knowledge discovered from the pre-processed test data set is desirable. After the training has been confirmed, live biological data can be pre-processed then input into the trained learning machine for extraction of useful information. In the preferred embodiment, the learning machine is one or more support vector machines.</p>
16 schema:keywords Dataset
17 biological data
18 data point
19 dimensionality
20 embodiment
21 extract useful information
22 extraction
23 input
24 machine
25 method
26 output
27 success
28 training data
29 useful information
30 vast quantity
31 vector machine
32 schema:name Method for enhancing knowledge discovered from biological data using a learning machine
33 schema:sameAs https://app.dimensions.ai/details/patent/US-6789069-B1
34 schema:sdDatePublished 2019-04-18T10:28
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N8cb23746765445bb87fa554b5ff83606
37 sgo:license sg:explorer/license/
38 sgo:sdDataset patents
39 rdf:type sgo:Patent
40 N23019a0a292143088f2dce9015f15cf7 schema:name Jason Weston
41 rdf:type schema:Person
42 N480a6fcceaff483cbe66f1e60f7c6dc2 rdf:first Nd8c6bfdac321469c9673689f7b0598c6
43 rdf:rest Ne1265dc8eae1439780729008bd504816
44 N739d0331717b44e9b5294ea896b15f00 schema:name Isabelle Guyon
45 rdf:type schema:Person
46 N8cb23746765445bb87fa554b5ff83606 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nd8c6bfdac321469c9673689f7b0598c6 schema:name Stephen Barnhill
49 rdf:type schema:Person
50 Ne1265dc8eae1439780729008bd504816 rdf:first N739d0331717b44e9b5294ea896b15f00
51 rdf:rest Nf6949d94286e42f8befb8b4af52637bb
52 Nf6949d94286e42f8befb8b4af52637bb rdf:first N23019a0a292143088f2dce9015f15cf7
53 rdf:rest rdf:nil
54 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
55 rdf:type schema:DefinedTerm
56 sg:pub.10.1038/35000501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010898206
57 https://doi.org/10.1038/35000501
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1073/pnas.95.25.14863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020882317
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1073/pnas.96.11.6428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522490
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1073/pnas.96.12.6745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033514193
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1073/pnas.96.16.9212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002392246
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1073/pnas.96.6.2811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051630147
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1073/pnas.97.1.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048892448
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1074/jbc.271.49.31470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051588417
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1109/78.650102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061229999
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1128/mcb.19.9.6355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037469955
78 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...