Superconducting dot/anti-dot flux qubit based on time-reversal symmetry breaking effects


Ontology type: sgo:Patent     


Patent Info

DATE

2003-01-07T00:00

AUTHORS

Alexandre M. Zagoskin , Geordie Rose , Mohammad H. S. Amin , Marcel Franz , Jeremy P. Hilton

ABSTRACT

A solid-state quantum computing structure includes a dot of superconductive material, where the superconductor possesses a dominant order parameter with a non-zero angular momentum and a sub-dominant order parameter that can have any pairing symmetry. Alternately a solid-state quantum computing structure includes an anti-dot, which is a region in a superconductor where the order parameter is suppressed. In either embodiment of the invention, circulating persistent currents are generated via time-reversal symmetry breaking effects in the boundaries between superconducting and insulating materials. These effects cause the ground state for the supercurrent circulating near the qubit to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents store quantum information, which creates the basis of qubits for quantum computing. Writing to the qubits and universal single qubit operations may be performed via the application of magnetic fields. Read-out of the information may be performed using a SQUID microscope or a magnetic force microscope. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2389", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Alexandre M. Zagoskin", 
        "type": "Person"
      }, 
      {
        "name": "Geordie Rose", 
        "type": "Person"
      }, 
      {
        "name": "Mohammad H. S. Amin", 
        "type": "Person"
      }, 
      {
        "name": "Marcel Franz", 
        "type": "Person"
      }, 
      {
        "name": "Jeremy P. Hilton", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.56.5116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003068926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.5116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003068926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.15400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005574694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.15400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005574694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005853731", 
          "https://doi.org/10.1038/35017505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35017505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005853731", 
          "https://doi.org/10.1038/35017505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009880010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009880010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011715724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011715724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.14163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011923587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.14163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011923587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.3568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012250447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.3568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012250447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.9734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015282989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.9734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015282989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(96)00468-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016385204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.12904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018473962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.12904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018473962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.15398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018700002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.15398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018700002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021296790", 
          "https://doi.org/10.1038/30687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.1142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021857649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.1142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021857649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.4412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022062338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.4412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022062338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029391446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029391446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029391446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.13934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031231595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.13934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031231595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01307857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043098828", 
          "https://doi.org/10.1007/bf01307857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01307857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043098828", 
          "https://doi.org/10.1007/bf01307857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/329229a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045493981", 
          "https://doi.org/10.1038/329229a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.11802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048442797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.11802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048442797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.3357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052682145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.3357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052682145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.7354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.7354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.14108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.14108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.8009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060588429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.8009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060588429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.1084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.72.969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.72.969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/77.622206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061225168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.589547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062199593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.238.4825.342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062534811"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-01-07T00:00", 
    "description": "

A solid-state quantum computing structure includes a dot of superconductive material, where the superconductor possesses a dominant order parameter with a non-zero angular momentum and a sub-dominant order parameter that can have any pairing symmetry. Alternately a solid-state quantum computing structure includes an anti-dot, which is a region in a superconductor where the order parameter is suppressed. In either embodiment of the invention, circulating persistent currents are generated via time-reversal symmetry breaking effects in the boundaries between superconducting and insulating materials. These effects cause the ground state for the supercurrent circulating near the qubit to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents store quantum information, which creates the basis of qubits for quantum computing. Writing to the qubits and universal single qubit operations may be performed via the application of magnetic fields. Read-out of the information may be performed using a SQUID microscope or a magnetic force microscope.

", "id": "sg:patent.US-6504172-B2", "keywords": [ "superconducting", "time-reversal symmetry", "solid state", "dot", "superconductors", "order parameter", "angular momentum", "symmetry", "embodiment", "invention", "persistent current", "boundary", "ground state", "supercurrent", "qubits", "magnetic moment", "quantum state", "quantum information", "quantum", "operation", "magnetic field", "read-out", "microscope", "magnetic force microscope" ], "name": "Superconducting dot/anti-dot flux qubit based on time-reversal symmetry breaking effects", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.421761.7", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-6504172-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:27", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03116.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-6504172-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-6504172-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-6504172-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-6504172-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      15 PREDICATES      71 URIs      32 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-6504172-B2 schema:about anzsrc-for:2389
2 schema:author Ne3f2ffcfea77443399675c77fdbf0de8
3 schema:citation sg:pub.10.1007/bf01307857
4 sg:pub.10.1038/19718
5 sg:pub.10.1038/30687
6 sg:pub.10.1038/329229a0
7 sg:pub.10.1038/35017505
8 https://doi.org/10.1016/0921-4534(96)00468-6
9 https://doi.org/10.1103/physrevb.34.158
10 https://doi.org/10.1103/physrevb.51.12904
11 https://doi.org/10.1103/physrevb.54.7354
12 https://doi.org/10.1103/physrevb.55.1142
13 https://doi.org/10.1103/physrevb.56.14108
14 https://doi.org/10.1103/physrevb.56.14163
15 https://doi.org/10.1103/physrevb.56.5116
16 https://doi.org/10.1103/physrevb.57.15400
17 https://doi.org/10.1103/physrevb.57.8009
18 https://doi.org/10.1103/physrevb.59.3357
19 https://doi.org/10.1103/physrevb.59.4412
20 https://doi.org/10.1103/physrevb.60.15398
21 https://doi.org/10.1103/physrevb.60.3568
22 https://doi.org/10.1103/physrevb.61.9734
23 https://doi.org/10.1103/physrevb.62.11802
24 https://doi.org/10.1103/physrevb.62.13934
25 https://doi.org/10.1103/physrevlett.72.1084
26 https://doi.org/10.1103/physrevlett.73.593
27 https://doi.org/10.1103/physrevlett.74.3249
28 https://doi.org/10.1103/physrevlett.81.2783
29 https://doi.org/10.1103/physrevlett.86.312
30 https://doi.org/10.1103/revmodphys.59.1
31 https://doi.org/10.1103/revmodphys.71.631
32 https://doi.org/10.1103/revmodphys.72.969
33 https://doi.org/10.1109/77.622206
34 https://doi.org/10.1116/1.589547
35 https://doi.org/10.1126/science.238.4825.342
36 schema:datePublished 2003-01-07T00:00
37 schema:description <p>A solid-state quantum computing structure includes a dot of superconductive material, where the superconductor possesses a dominant order parameter with a non-zero angular momentum and a sub-dominant order parameter that can have any pairing symmetry. Alternately a solid-state quantum computing structure includes an anti-dot, which is a region in a superconductor where the order parameter is suppressed. In either embodiment of the invention, circulating persistent currents are generated via time-reversal symmetry breaking effects in the boundaries between superconducting and insulating materials. These effects cause the ground state for the supercurrent circulating near the qubit to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents store quantum information, which creates the basis of qubits for quantum computing. Writing to the qubits and universal single qubit operations may be performed via the application of magnetic fields. Read-out of the information may be performed using a SQUID microscope or a magnetic force microscope.</p>
38 schema:keywords angular momentum
39 boundary
40 dot
41 embodiment
42 ground state
43 invention
44 magnetic field
45 magnetic force microscope
46 magnetic moment
47 microscope
48 operation
49 order parameter
50 persistent current
51 quantum
52 quantum information
53 quantum state
54 qubits
55 read-out
56 solid state
57 superconducting
58 superconductors
59 supercurrent
60 symmetry
61 time-reversal symmetry
62 schema:name Superconducting dot/anti-dot flux qubit based on time-reversal symmetry breaking effects
63 schema:recipient https://www.grid.ac/institutes/grid.421761.7
64 schema:sameAs https://app.dimensions.ai/details/patent/US-6504172-B2
65 schema:sdDatePublished 2019-04-18T10:27
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N063087d52754458a941916ac665b29ab
68 sgo:license sg:explorer/license/
69 sgo:sdDataset patents
70 rdf:type sgo:Patent
71 N063087d52754458a941916ac665b29ab schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N4191654c8c124217b2c1aef07a191993 rdf:first N675831b34b214e09b5964df41d2af270
74 rdf:rest Nd3e40ef70045453ca4d676c0febf83e2
75 N45882aa141d24135bbc56038f18a9978 schema:name Alexandre M. Zagoskin
76 rdf:type schema:Person
77 N66b5e29e3a1745dfa0d164cd9516bcd2 schema:name Marcel Franz
78 rdf:type schema:Person
79 N675831b34b214e09b5964df41d2af270 schema:name Geordie Rose
80 rdf:type schema:Person
81 N7a12c7f7933a49928e832a5179e66ab3 rdf:first Neb7a2b13a7614a5fb4f73a0e95d05ede
82 rdf:rest rdf:nil
83 Nd3e40ef70045453ca4d676c0febf83e2 rdf:first Ne8c0c918cd4c4aa99c7d08bd4b001a08
84 rdf:rest Nfebe38917f85406d8fa0241b31ca8c97
85 Ne3f2ffcfea77443399675c77fdbf0de8 rdf:first N45882aa141d24135bbc56038f18a9978
86 rdf:rest N4191654c8c124217b2c1aef07a191993
87 Ne8c0c918cd4c4aa99c7d08bd4b001a08 schema:name Mohammad H. S. Amin
88 rdf:type schema:Person
89 Neb7a2b13a7614a5fb4f73a0e95d05ede schema:name Jeremy P. Hilton
90 rdf:type schema:Person
91 Nfebe38917f85406d8fa0241b31ca8c97 rdf:first N66b5e29e3a1745dfa0d164cd9516bcd2
92 rdf:rest N7a12c7f7933a49928e832a5179e66ab3
93 anzsrc-for:2389 schema:inDefinedTermSet anzsrc-for:
94 rdf:type schema:DefinedTerm
95 sg:pub.10.1007/bf01307857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043098828
96 https://doi.org/10.1007/bf01307857
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/19718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792474
99 https://doi.org/10.1038/19718
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/30687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021296790
102 https://doi.org/10.1038/30687
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/329229a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045493981
105 https://doi.org/10.1038/329229a0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/35017505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005853731
108 https://doi.org/10.1038/35017505
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0921-4534(96)00468-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016385204
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevb.34.158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060540606
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.51.12904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018473962
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.54.7354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582726
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.55.1142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021857649
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.56.14108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585691
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.56.14163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011923587
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.56.5116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003068926
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.57.15400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005574694
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.57.8009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060588429
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.59.3357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052682145
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.59.4412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022062338
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevb.60.15398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018700002
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevb.60.3568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012250447
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1103/physrevb.61.9734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015282989
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.62.11802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048442797
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevb.62.13934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031231595
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.72.1084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808454
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.73.593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810183
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.74.3249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029391446
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.81.2783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011715724
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.86.312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009880010
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/revmodphys.59.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839108
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/revmodphys.71.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839454
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/revmodphys.72.969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839530
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/77.622206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061225168
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1116/1.589547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062199593
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1126/science.238.4825.342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062534811
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.421761.7 schema:Organization
 




Preview window. Press ESC to close (or click here)


...