Qubit using a Josephson junction between s-wave and d-wave superconductors


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Alexandre M. Zagoskin

ABSTRACT

A solid-state quantum computing structure includes a set of islands that Josephson junctions separate from a first superconducting bank. A d-wave superconductor is on one side of the Josephson junctions (either the islands' side or the bank's side), and an s-wave superconductor forms the other side of the Josephson junctions. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states. A second bank, which a Josephson junction separates from the first bank, can be coupled to the islands through single electron transistors for selectably initializing one or more of the supercurrents in a different quantum state. Single electron transistors can also be between the islands to control entanglements while the quantum states evolve. After the quantum states have evolved to complete a calculation, grounding the islands, for example, through yet another set of single electron transistors, fixes the junctions in states having definite magnetic moments and facilitates measurement of the supercurrent when determining a result of the quantum computing. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2389", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Alexandre M. Zagoskin", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.60.3096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005056767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.15400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005574694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.14431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007708282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.2371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009012763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011456984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/30/16/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011495113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.14163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011923587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.3568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012250447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(90)90156-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015070973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015297414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.280.5367.1238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017843919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.12904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018473962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.15398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018700002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021296790", 
          "https://doi.org/10.1038/30687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.4412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022062338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026792474", 
          "https://doi.org/10.1038/19718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.17999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028008787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028699755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.3249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029391446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1262682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034740841", 
          "https://doi.org/10.1134/1.1262682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.5452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037822093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(94)90248-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041802890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046176436", 
          "https://doi.org/10.1038/19464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.15147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049695812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.1548", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050730271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.122973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.125627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057689742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.25.4515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060530522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.36.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060543527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.15233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.14638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.72", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060572280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060574164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.7354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.11670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060583467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.11184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.14108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.11502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.3183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.67.1362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060803059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.2458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060810183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.4010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5432.1373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0097539795293172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.65.3630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063116127"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

A solid-state quantum computing structure includes a set of islands that Josephson junctions separate from a first superconducting bank. A d-wave superconductor is on one side of the Josephson junctions (either the islands' side or the bank's side), and an s-wave superconductor forms the other side of the Josephson junctions. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states. A second bank, which a Josephson junction separates from the first bank, can be coupled to the islands through single electron transistors for selectably initializing one or more of the supercurrents in a different quantum state. Single electron transistors can also be between the islands to control entanglements while the quantum states evolve. After the quantum states have evolved to complete a calculation, grounding the islands, for example, through yet another set of single electron transistors, fixes the junctions in states having definite magnetic moments and facilitates measurement of the supercurrent when determining a result of the quantum computing.

", "id": "sg:patent.US-6459097-B1", "keywords": [ "qubits", "Josephson junction", "S wave", "superconductors", "solid state", "island", "superconducting", "bank", "ground state", "supercurrent", "junction", "magnetic moment", "quantum state", "quantum", "crystal orientation", "probability", "single electron transistor", "entanglement", "calculation", "FIX", "state", "measurement" ], "name": "Qubit using a Josephson junction between s-wave and d-wave superconductors", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.421761.7", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-6459097-B1" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:37", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_e5ffef63.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-6459097-B1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-6459097-B1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-6459097-B1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-6459097-B1'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      14 PREDICATES      87 URIs      29 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-6459097-B1 schema:about anzsrc-for:2389
2 schema:author N3926d1e94ca143bd9cf3f4e733f32eca
3 schema:citation sg:pub.10.1038/19464
4 sg:pub.10.1038/19718
5 sg:pub.10.1038/30687
6 sg:pub.10.1134/1.1262682
7 https://doi.org/10.1016/0370-1573(90)90156-v
8 https://doi.org/10.1016/0921-4526(94)90248-8
9 https://doi.org/10.1063/1.122973
10 https://doi.org/10.1063/1.123258
11 https://doi.org/10.1063/1.125627
12 https://doi.org/10.1088/0305-4470/30/16/017
13 https://doi.org/10.1103/physrevb.25.4515
14 https://doi.org/10.1103/physrevb.36.235
15 https://doi.org/10.1103/physrevb.44.470
16 https://doi.org/10.1103/physrevb.46.15233
17 https://doi.org/10.1103/physrevb.47.14638
18 https://doi.org/10.1103/physrevb.5.72
19 https://doi.org/10.1103/physrevb.50.631
20 https://doi.org/10.1103/physrevb.51.12904
21 https://doi.org/10.1103/physrevb.51.17999
22 https://doi.org/10.1103/physrevb.52.665
23 https://doi.org/10.1103/physrevb.53.15147
24 https://doi.org/10.1103/physrevb.53.1548
25 https://doi.org/10.1103/physrevb.54.7354
26 https://doi.org/10.1103/physrevb.55.11670
27 https://doi.org/10.1103/physrevb.55.8457
28 https://doi.org/10.1103/physrevb.56.11184
29 https://doi.org/10.1103/physrevb.56.14108
30 https://doi.org/10.1103/physrevb.56.14163
31 https://doi.org/10.1103/physrevb.57.15400
32 https://doi.org/10.1103/physrevb.59.11502
33 https://doi.org/10.1103/physrevb.59.4412
34 https://doi.org/10.1103/physrevb.60.15398
35 https://doi.org/10.1103/physrevb.60.3096
36 https://doi.org/10.1103/physrevb.60.3568
37 https://doi.org/10.1103/physrevb.62.14431
38 https://doi.org/10.1103/physrevlett.64.3183
39 https://doi.org/10.1103/physrevlett.67.1362
40 https://doi.org/10.1103/physrevlett.69.2264
41 https://doi.org/10.1103/physrevlett.72.2458
42 https://doi.org/10.1103/physrevlett.73.2484
43 https://doi.org/10.1103/physrevlett.73.593
44 https://doi.org/10.1103/physrevlett.74.3249
45 https://doi.org/10.1103/physrevlett.74.797
46 https://doi.org/10.1103/physrevlett.79.2371
47 https://doi.org/10.1103/physrevlett.79.4010
48 https://doi.org/10.1103/physrevlett.80.3408
49 https://doi.org/10.1103/physrevlett.81.894
50 https://doi.org/10.1103/physrevlett.85.5452
51 https://doi.org/10.1126/science.280.5367.1238
52 https://doi.org/10.1126/science.285.5432.1373
53 https://doi.org/10.1137/s0097539795293172
54 https://doi.org/10.1143/jpsj.65.3630
55 schema:description <p>A solid-state quantum computing structure includes a set of islands that Josephson junctions separate from a first superconducting bank. A d-wave superconductor is on one side of the Josephson junctions (either the islands' side or the bank's side), and an s-wave superconductor forms the other side of the Josephson junctions. The d-wave superconductor causes the ground state for the supercurrent at each junction to be doubly degenerate, with two supercurrent ground states having distinct magnetic moments. These quantum states of the supercurrents at the junctions create qubits for quantum computing. The quantum states can be uniformly initialized from the bank, and the crystal orientations of the islands relative to the bank influence the initial quantum state and tunneling probabilities between the ground states. A second bank, which a Josephson junction separates from the first bank, can be coupled to the islands through single electron transistors for selectably initializing one or more of the supercurrents in a different quantum state. Single electron transistors can also be between the islands to control entanglements while the quantum states evolve. After the quantum states have evolved to complete a calculation, grounding the islands, for example, through yet another set of single electron transistors, fixes the junctions in states having definite magnetic moments and facilitates measurement of the supercurrent when determining a result of the quantum computing.</p>
56 schema:keywords FIX
57 Josephson junction
58 S wave
59 bank
60 calculation
61 crystal orientation
62 entanglement
63 ground state
64 island
65 junction
66 magnetic moment
67 measurement
68 probability
69 quantum
70 quantum state
71 qubits
72 single electron transistor
73 solid state
74 state
75 superconducting
76 superconductors
77 supercurrent
78 schema:name Qubit using a Josephson junction between s-wave and d-wave superconductors
79 schema:recipient https://www.grid.ac/institutes/grid.421761.7
80 schema:sameAs https://app.dimensions.ai/details/patent/US-6459097-B1
81 schema:sdDatePublished 2019-03-07T15:37
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N18a5ec28461a44b6b43396904cea9563
84 sgo:license sg:explorer/license/
85 sgo:sdDataset patents
86 rdf:type sgo:Patent
87 N18a5ec28461a44b6b43396904cea9563 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N3926d1e94ca143bd9cf3f4e733f32eca rdf:first N72c4c329076e402db9cd229192a4fc27
90 rdf:rest rdf:nil
91 N72c4c329076e402db9cd229192a4fc27 schema:name Alexandre M. Zagoskin
92 rdf:type schema:Person
93 anzsrc-for:2389 schema:inDefinedTermSet anzsrc-for:
94 rdf:type schema:DefinedTerm
95 sg:pub.10.1038/19464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046176436
96 https://doi.org/10.1038/19464
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/19718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026792474
99 https://doi.org/10.1038/19718
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/30687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021296790
102 https://doi.org/10.1038/30687
103 rdf:type schema:CreativeWork
104 sg:pub.10.1134/1.1262682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034740841
105 https://doi.org/10.1134/1.1262682
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/0370-1573(90)90156-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1015070973
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0921-4526(94)90248-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041802890
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.122973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687129
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.123258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015297414
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.125627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057689742
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0305-4470/30/16/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011495113
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevb.25.4515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060530522
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevb.36.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060543527
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.44.470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559559
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.46.15233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060563218
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.47.14638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565394
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.5.72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060572280
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.50.631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060574164
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.51.12904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018473962
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.51.17999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028008787
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.52.665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028699755
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevb.53.15147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049695812
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevb.53.1548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730271
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.54.7354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582726
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.55.11670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060583467
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevb.55.8457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584814
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevb.56.11184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585372
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.56.14108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585691
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.56.14163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011923587
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.57.15400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005574694
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.59.11502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060590853
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.59.4412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022062338
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.60.15398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018700002
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.60.3096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005056767
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.60.3568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012250447
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.62.14431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007708282
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.64.3183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800812
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.67.1362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803059
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.69.2264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011456984
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.72.2458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808823
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.73.2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809830
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.73.593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060810183
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1103/physrevlett.74.3249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029391446
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1103/physrevlett.74.797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811419
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1103/physrevlett.79.2371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009012763
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physrevlett.79.4010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816228
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.80.3408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817275
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physrevlett.81.894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818840
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physrevlett.85.5452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037822093
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1126/science.280.5367.1238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017843919
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.285.5432.1373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566409
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1137/s0097539795293172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880065
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1143/jpsj.65.3630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063116127
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.421761.7 schema:Organization
 




Preview window. Press ESC to close (or click here)


...