Nuclear magnetic resonance quantum computing method with improved solvents


Ontology type: sgo:Patent     


Patent Info

DATE

2001-04-17T00:00

AUTHORS

Isaac Liu Chuang , Mark Hull Sherwood , Costantino Sheldon Yannoni

ABSTRACT

A method for nuclear magnetic resonance quantum computing (NMRQC) uses a liquid crystal solvent into which the quantum computing molecules are dissolved. The method allows implementation of more complex quantum algorithms which require execution of many logic gates over the duration of a decoherence time, allows NMRQC clock frequencies to be increased by at least an order of magnitude beyond those achievable using isotropic liquid solvents, and decreases the reinitialization times for a NMR quantum computer without decreasing the computational capability of the molecular systems. More... »

Related SciGraph Publications

  • 1998-06. Quantum Computing with Molecules in SCIENTIFIC AMERICAN
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2759", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Isaac Liu Chuang", 
            "type": "Person"
          }, 
          {
            "name": "Mark Hull Sherwood", 
            "type": "Person"
          }, 
          {
            "name": "Costantino Sheldon Yannoni", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1126/science.277.5332.1688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026184182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspa.1998.0170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035660074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.94.5.1634", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039621997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040038666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040038666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040038666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044658333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.75.4710", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044658333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja00497a058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055737317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0698-66", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056556914", 
              "https://doi.org/10.1038/scientificamerican0698-66"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.11.462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.11.462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.11.462", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060760942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.4091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.4091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.74.4091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060811055"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.80.3408", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060817275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.275.5298.350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062555517"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2001-04-17T00:00", 
        "description": "

    A method for nuclear magnetic resonance quantum computing (NMRQC) uses a liquid crystal solvent into which the quantum computing molecules are dissolved. The method allows implementation of more complex quantum algorithms which require execution of many logic gates over the duration of a decoherence time, allows NMRQC clock frequencies to be increased by at least an order of magnitude beyond those achievable using isotropic liquid solvents, and decreases the reinitialization times for a NMR quantum computer without decreasing the computational capability of the molecular systems.

    ", "id": "sg:patent.US-6218832-B1", "keywords": [ "resonance", "method", "solvent", "liquid crystal", "quantum", "molecule", "implementation", "quantum algorithm", "execution", "logic gate", "duration", "decoherence", "clock frequency", "magnitude", "liquid solvent", "Time", "quantum computer", "computational capability", "molecular system" ], "name": "Nuclear magnetic resonance quantum computing method with improved solvents", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.410484.d", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-6218832-B1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:27", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03088.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-6218832-B1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-6218832-B1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-6218832-B1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-6218832-B1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    83 TRIPLES      15 PREDICATES      44 URIs      27 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-6218832-B1 schema:about anzsrc-for:2759
    2 schema:author N5d87db8e44f545ecb6a0f7065e4a38ae
    3 schema:citation sg:pub.10.1038/scientificamerican0698-66
    4 https://doi.org/10.1021/ja00497a058
    5 https://doi.org/10.1073/pnas.94.5.1634
    6 https://doi.org/10.1098/rspa.1998.0170
    7 https://doi.org/10.1103/physrevlett.11.462
    8 https://doi.org/10.1103/physrevlett.74.4091
    9 https://doi.org/10.1103/physrevlett.75.4710
    10 https://doi.org/10.1103/physrevlett.75.4714
    11 https://doi.org/10.1103/physrevlett.80.3408
    12 https://doi.org/10.1126/science.275.5298.350
    13 https://doi.org/10.1126/science.277.5332.1688
    14 schema:datePublished 2001-04-17T00:00
    15 schema:description <p>A method for nuclear magnetic resonance quantum computing (NMRQC) uses a liquid crystal solvent into which the quantum computing molecules are dissolved. The method allows implementation of more complex quantum algorithms which require execution of many logic gates over the duration of a decoherence time, allows NMRQC clock frequencies to be increased by at least an order of magnitude beyond those achievable using isotropic liquid solvents, and decreases the reinitialization times for a NMR quantum computer without decreasing the computational capability of the molecular systems.</p>
    16 schema:keywords Time
    17 clock frequency
    18 computational capability
    19 decoherence
    20 duration
    21 execution
    22 implementation
    23 liquid crystal
    24 liquid solvent
    25 logic gate
    26 magnitude
    27 method
    28 molecular system
    29 molecule
    30 quantum
    31 quantum algorithm
    32 quantum computer
    33 resonance
    34 solvent
    35 schema:name Nuclear magnetic resonance quantum computing method with improved solvents
    36 schema:recipient https://www.grid.ac/institutes/grid.410484.d
    37 schema:sameAs https://app.dimensions.ai/details/patent/US-6218832-B1
    38 schema:sdDatePublished 2019-04-18T10:27
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N05051bf2968f4152b09e160e224512be
    41 sgo:license sg:explorer/license/
    42 sgo:sdDataset patents
    43 rdf:type sgo:Patent
    44 N05051bf2968f4152b09e160e224512be schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N0c44395cfc0d48bfb352911d6d0a8b9e schema:name Mark Hull Sherwood
    47 rdf:type schema:Person
    48 N5d87db8e44f545ecb6a0f7065e4a38ae rdf:first Ne2c3c3e72dcd450b949cdb4152765b8a
    49 rdf:rest Na7025b7a08bd41e1a3ada461ccd3c9ed
    50 Na7025b7a08bd41e1a3ada461ccd3c9ed rdf:first N0c44395cfc0d48bfb352911d6d0a8b9e
    51 rdf:rest Nc3791e2e295a4b28a4d92cf230bc3662
    52 Nb8c8a4b963104b4a938402a8765c4cf1 schema:name Costantino Sheldon Yannoni
    53 rdf:type schema:Person
    54 Nc3791e2e295a4b28a4d92cf230bc3662 rdf:first Nb8c8a4b963104b4a938402a8765c4cf1
    55 rdf:rest rdf:nil
    56 Ne2c3c3e72dcd450b949cdb4152765b8a schema:name Isaac Liu Chuang
    57 rdf:type schema:Person
    58 anzsrc-for:2759 schema:inDefinedTermSet anzsrc-for:
    59 rdf:type schema:DefinedTerm
    60 sg:pub.10.1038/scientificamerican0698-66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056556914
    61 https://doi.org/10.1038/scientificamerican0698-66
    62 rdf:type schema:CreativeWork
    63 https://doi.org/10.1021/ja00497a058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055737317
    64 rdf:type schema:CreativeWork
    65 https://doi.org/10.1073/pnas.94.5.1634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039621997
    66 rdf:type schema:CreativeWork
    67 https://doi.org/10.1098/rspa.1998.0170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035660074
    68 rdf:type schema:CreativeWork
    69 https://doi.org/10.1103/physrevlett.11.462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760942
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1103/physrevlett.74.4091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811055
    72 rdf:type schema:CreativeWork
    73 https://doi.org/10.1103/physrevlett.75.4710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044658333
    74 rdf:type schema:CreativeWork
    75 https://doi.org/10.1103/physrevlett.75.4714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040038666
    76 rdf:type schema:CreativeWork
    77 https://doi.org/10.1103/physrevlett.80.3408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817275
    78 rdf:type schema:CreativeWork
    79 https://doi.org/10.1126/science.275.5298.350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062555517
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1126/science.277.5332.1688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026184182
    82 rdf:type schema:CreativeWork
    83 https://www.grid.ac/institutes/grid.410484.d schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...