Methods for detecting predisposition to cancer at the MTS gene


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Mark H. Skolnick , Lisa A. Cannon-Albright , Alexander Kamb

ABSTRACT

The present invention relates to somatic mutations in the Multiple Tumor Suppressor (MTS) gene in human cancers and their use in the diagnosis and prognosis of human cancer. The invention further relates to germ line mutations in the MTS gene and their use in the diagnosis of predisposition to melanoma, leukemia, astrocytoma, glioblastoma, lymphoma, glioma, Hodgkin's lymphoma, CLL, and cancers of the pancreas, breast, thyroid, ovary, uterus, testis, kidney, stomach and rectum. The invention also relates to the therapy of human cancers which have a mutation in the MTS gene, including gene therapy, protein replacement therapy and protein mimetics. Finally, the invention relates to the screening of drugs for cancer therapy. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3142", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Mark H. Skolnick", 
        "type": "Person"
      }, 
      {
        "name": "Lisa A. Cannon-Albright", 
        "type": "Person"
      }, 
      {
        "name": "Alexander Kamb", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/366707a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000182688", 
          "https://doi.org/10.1038/366707a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.3.7.1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002444082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.19.9146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009445669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1994.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009692223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(93)90636-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009780866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350512a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014976902", 
          "https://doi.org/10.1038/350512a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/366704a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015821919", 
          "https://doi.org/10.1038/366704a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/366701a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020218634", 
          "https://doi.org/10.1038/366701a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008390-199212000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021281765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.21.10557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.2.709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029903810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(93)90528-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035145585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0994-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042277853", 
          "https://doi.org/10.1038/ng0994-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/366634a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044157091", 
          "https://doi.org/10.1038/366634a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/371257a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045553304", 
          "https://doi.org/10.1038/371257a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368753a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045854758", 
          "https://doi.org/10.1038/368753a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.16.7563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052984242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1439824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062482274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1659742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062497986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2683075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8153613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8153634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8266092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8278804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fasebj.7.10.8344488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082766700"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

The present invention relates to somatic mutations in the Multiple Tumor Suppressor (MTS) gene in human cancers and their use in the diagnosis and prognosis of human cancer. The invention further relates to germ line mutations in the MTS gene and their use in the diagnosis of predisposition to melanoma, leukemia, astrocytoma, glioblastoma, lymphoma, glioma, Hodgkin's lymphoma, CLL, and cancers of the pancreas, breast, thyroid, ovary, uterus, testis, kidney, stomach and rectum. The invention also relates to the therapy of human cancers which have a mutation in the MTS gene, including gene therapy, protein replacement therapy and protein mimetics. Finally, the invention relates to the screening of drugs for cancer therapy.

", "id": "sg:patent.US-5989815-A", "keywords": [ "method", "predisposition", "Neoplasm", "MT gene", "invention", "somatic mutation", "tumor suppressor", "gene", "human cancer", "diagnosis", "prognosis", "Germ-Line Mutation", "tumor suppressor gene", "melanoma", "leukemia", "Astrocytoma", "Glioblastoma", "lymphoma", "glioma", "Hodgkin's", "CLL", "pancreas", "breast", "Thyroid Gland", "ovary", "uterus", "testis", "kidney", "stomach", "rectum", "therapy", "mutation", "Genetic Therapy", "replacement therapy", "protein", "Mass Screening", "drug", "cancer therapy" ], "name": "Methods for detecting predisposition to cancer at the MTS gene", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.420032.7", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.223827.e", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-5989815-A" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:36", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_c65b015e.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-5989815-A'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-5989815-A'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-5989815-A'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-5989815-A'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      14 PREDICATES      77 URIs      45 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-5989815-A schema:about anzsrc-for:3142
2 schema:author N834002d4def34f5294ca7fc170a96dd8
3 schema:citation sg:pub.10.1038/350512a0
4 sg:pub.10.1038/366634a0
5 sg:pub.10.1038/366701a0
6 sg:pub.10.1038/366704a0
7 sg:pub.10.1038/366707a0
8 sg:pub.10.1038/368753a0
9 sg:pub.10.1038/371257a0
10 sg:pub.10.1038/ng0994-22
11 https://doi.org/10.1006/geno.1994.1491
12 https://doi.org/10.1016/0092-8674(93)90528-x
13 https://doi.org/10.1016/0092-8674(93)90636-5
14 https://doi.org/10.1073/pnas.89.19.9146
15 https://doi.org/10.1073/pnas.89.21.10557
16 https://doi.org/10.1073/pnas.91.16.7563
17 https://doi.org/10.1073/pnas.91.2.709
18 https://doi.org/10.1096/fasebj.7.10.8344488
19 https://doi.org/10.1097/00008390-199212000-00007
20 https://doi.org/10.1101/gad.3.7.1086
21 https://doi.org/10.1126/science.1439824
22 https://doi.org/10.1126/science.1659742
23 https://doi.org/10.1126/science.2683075
24 https://doi.org/10.1126/science.8153613
25 https://doi.org/10.1126/science.8153634
26 https://doi.org/10.1126/science.8266092
27 https://doi.org/10.1126/science.8278804
28 schema:description <p>The present invention relates to somatic mutations in the Multiple Tumor Suppressor (MTS) gene in human cancers and their use in the diagnosis and prognosis of human cancer. The invention further relates to germ line mutations in the MTS gene and their use in the diagnosis of predisposition to melanoma, leukemia, astrocytoma, glioblastoma, lymphoma, glioma, Hodgkin's lymphoma, CLL, and cancers of the pancreas, breast, thyroid, ovary, uterus, testis, kidney, stomach and rectum. The invention also relates to the therapy of human cancers which have a mutation in the MTS gene, including gene therapy, protein replacement therapy and protein mimetics. Finally, the invention relates to the screening of drugs for cancer therapy.</p>
29 schema:keywords Astrocytoma
30 CLL
31 Genetic Therapy
32 Germ-Line Mutation
33 Glioblastoma
34 Hodgkin's
35 MT gene
36 Mass Screening
37 Neoplasm
38 Thyroid Gland
39 breast
40 cancer therapy
41 diagnosis
42 drug
43 gene
44 glioma
45 human cancer
46 invention
47 kidney
48 leukemia
49 lymphoma
50 melanoma
51 method
52 mutation
53 ovary
54 pancreas
55 predisposition
56 prognosis
57 protein
58 rectum
59 replacement therapy
60 somatic mutation
61 stomach
62 testis
63 therapy
64 tumor suppressor
65 tumor suppressor gene
66 uterus
67 schema:name Methods for detecting predisposition to cancer at the MTS gene
68 schema:recipient https://www.grid.ac/institutes/grid.223827.e
69 https://www.grid.ac/institutes/grid.420032.7
70 schema:sameAs https://app.dimensions.ai/details/patent/US-5989815-A
71 schema:sdDatePublished 2019-03-07T15:36
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N3e1c5b61d116481ca93144a7049183e0
74 sgo:license sg:explorer/license/
75 sgo:sdDataset patents
76 rdf:type sgo:Patent
77 N14899e0abf6f43d3af72f8a284f231ea schema:name Alexander Kamb
78 rdf:type schema:Person
79 N3e1c5b61d116481ca93144a7049183e0 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 N6e4296b22ba244dfa6bbea219a17deef rdf:first N14899e0abf6f43d3af72f8a284f231ea
82 rdf:rest rdf:nil
83 N834002d4def34f5294ca7fc170a96dd8 rdf:first Na3358963e3524c5ebefd93799cffb453
84 rdf:rest Nad035164ce8f42679e9ef4ed5feeb3e7
85 Na3358963e3524c5ebefd93799cffb453 schema:name Mark H. Skolnick
86 rdf:type schema:Person
87 Nad035164ce8f42679e9ef4ed5feeb3e7 rdf:first Nb1d2106d072a4d5c85498cdffd1faad3
88 rdf:rest N6e4296b22ba244dfa6bbea219a17deef
89 Nb1d2106d072a4d5c85498cdffd1faad3 schema:name Lisa A. Cannon-Albright
90 rdf:type schema:Person
91 anzsrc-for:3142 schema:inDefinedTermSet anzsrc-for:
92 rdf:type schema:DefinedTerm
93 sg:pub.10.1038/350512a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014976902
94 https://doi.org/10.1038/350512a0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/366634a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044157091
97 https://doi.org/10.1038/366634a0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/366701a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020218634
100 https://doi.org/10.1038/366701a0
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/366704a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015821919
103 https://doi.org/10.1038/366704a0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/366707a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000182688
106 https://doi.org/10.1038/366707a0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/368753a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045854758
109 https://doi.org/10.1038/368753a0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/371257a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045553304
112 https://doi.org/10.1038/371257a0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/ng0994-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042277853
115 https://doi.org/10.1038/ng0994-22
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1006/geno.1994.1491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009692223
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0092-8674(93)90528-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035145585
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0092-8674(93)90636-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009780866
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1073/pnas.89.19.9146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009445669
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1073/pnas.89.21.10557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028417988
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1073/pnas.91.16.7563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052984242
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1073/pnas.91.2.709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029903810
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1096/fasebj.7.10.8344488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082766700
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1097/00008390-199212000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021281765
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1101/gad.3.7.1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002444082
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.1439824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062482274
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.1659742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497986
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.2683075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550418
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.8153613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652951
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.8153634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652972
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.8266092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653900
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.8278804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653941
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.223827.e schema:Organization
152 https://www.grid.ac/institutes/grid.420032.7 schema:Organization
 




Preview window. Press ESC to close (or click here)


...