Methods for detecting predisposition to cancer at the MTS gene


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Mark H. Skolnick , Lisa A. Cannon-Albright , Alexander Kamb

ABSTRACT

The present invention relates to somatic mutations in the Multiple Tumor Suppressor (MTS) gene in human cancers and their use in the diagnosis and prognosis of human cancer. The invention further relates to germ line mutations in the MTS gene and their use in the diagnosis of predisposition to melanoma, leukemia, astrocytoma, glioblastoma, lymphoma, glioma, Hodgkin's lymphoma, CLL, and cancers of the pancreas, breast, thyroid, ovary, uterus, testis, kidney, stomach and rectum. The invention also relates to the therapy of human cancers which have a mutation in the MTS gene, including gene therapy, protein replacement therapy and protein mimetics. Finally, the invention relates to the screening of drugs for cancer therapy. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3142", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Mark H. Skolnick", 
        "type": "Person"
      }, 
      {
        "name": "Lisa A. Cannon-Albright", 
        "type": "Person"
      }, 
      {
        "name": "Alexander Kamb", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/366707a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000182688", 
          "https://doi.org/10.1038/366707a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.3.7.1086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002444082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.19.9146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009445669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/geno.1994.1491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009692223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(93)90636-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009780866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/350512a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014976902", 
          "https://doi.org/10.1038/350512a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/366704a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015821919", 
          "https://doi.org/10.1038/366704a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/366701a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020218634", 
          "https://doi.org/10.1038/366701a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00008390-199212000-00007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021281765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.21.10557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.2.709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029903810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(93)90528-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035145585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0994-22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042277853", 
          "https://doi.org/10.1038/ng0994-22"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/366634a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044157091", 
          "https://doi.org/10.1038/366634a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/371257a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045553304", 
          "https://doi.org/10.1038/371257a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/368753a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045854758", 
          "https://doi.org/10.1038/368753a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.91.16.7563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052984242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1439824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062482274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1659742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062497986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2683075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062550418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8153613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8153634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062652972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8266092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8278804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062653941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1096/fasebj.7.10.8344488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082766700"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

The present invention relates to somatic mutations in the Multiple Tumor Suppressor (MTS) gene in human cancers and their use in the diagnosis and prognosis of human cancer. The invention further relates to germ line mutations in the MTS gene and their use in the diagnosis of predisposition to melanoma, leukemia, astrocytoma, glioblastoma, lymphoma, glioma, Hodgkin's lymphoma, CLL, and cancers of the pancreas, breast, thyroid, ovary, uterus, testis, kidney, stomach and rectum. The invention also relates to the therapy of human cancers which have a mutation in the MTS gene, including gene therapy, protein replacement therapy and protein mimetics. Finally, the invention relates to the screening of drugs for cancer therapy.

", "id": "sg:patent.US-5989815-A", "keywords": [ "method", "predisposition", "Neoplasm", "MT gene", "invention", "somatic mutation", "tumor suppressor", "gene", "human cancer", "diagnosis", "prognosis", "Germ-Line Mutation", "tumor suppressor gene", "melanoma", "leukemia", "Astrocytoma", "Glioblastoma", "lymphoma", "glioma", "Hodgkin's", "CLL", "pancreas", "breast", "Thyroid Gland", "ovary", "uterus", "testis", "kidney", "stomach", "rectum", "therapy", "mutation", "Genetic Therapy", "replacement therapy", "protein", "Mass Screening", "drug", "cancer therapy" ], "name": "Methods for detecting predisposition to cancer at the MTS gene", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.420032.7", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.223827.e", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-5989815-A" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:36", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_c65b015e.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-5989815-A'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-5989815-A'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-5989815-A'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-5989815-A'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      14 PREDICATES      77 URIs      45 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-5989815-A schema:about anzsrc-for:3142
2 schema:author Nd865d5ea886d4d57b07ecb2c630afcc2
3 schema:citation sg:pub.10.1038/350512a0
4 sg:pub.10.1038/366634a0
5 sg:pub.10.1038/366701a0
6 sg:pub.10.1038/366704a0
7 sg:pub.10.1038/366707a0
8 sg:pub.10.1038/368753a0
9 sg:pub.10.1038/371257a0
10 sg:pub.10.1038/ng0994-22
11 https://doi.org/10.1006/geno.1994.1491
12 https://doi.org/10.1016/0092-8674(93)90528-x
13 https://doi.org/10.1016/0092-8674(93)90636-5
14 https://doi.org/10.1073/pnas.89.19.9146
15 https://doi.org/10.1073/pnas.89.21.10557
16 https://doi.org/10.1073/pnas.91.16.7563
17 https://doi.org/10.1073/pnas.91.2.709
18 https://doi.org/10.1096/fasebj.7.10.8344488
19 https://doi.org/10.1097/00008390-199212000-00007
20 https://doi.org/10.1101/gad.3.7.1086
21 https://doi.org/10.1126/science.1439824
22 https://doi.org/10.1126/science.1659742
23 https://doi.org/10.1126/science.2683075
24 https://doi.org/10.1126/science.8153613
25 https://doi.org/10.1126/science.8153634
26 https://doi.org/10.1126/science.8266092
27 https://doi.org/10.1126/science.8278804
28 schema:description <p>The present invention relates to somatic mutations in the Multiple Tumor Suppressor (MTS) gene in human cancers and their use in the diagnosis and prognosis of human cancer. The invention further relates to germ line mutations in the MTS gene and their use in the diagnosis of predisposition to melanoma, leukemia, astrocytoma, glioblastoma, lymphoma, glioma, Hodgkin's lymphoma, CLL, and cancers of the pancreas, breast, thyroid, ovary, uterus, testis, kidney, stomach and rectum. The invention also relates to the therapy of human cancers which have a mutation in the MTS gene, including gene therapy, protein replacement therapy and protein mimetics. Finally, the invention relates to the screening of drugs for cancer therapy.</p>
29 schema:keywords Astrocytoma
30 CLL
31 Genetic Therapy
32 Germ-Line Mutation
33 Glioblastoma
34 Hodgkin's
35 MT gene
36 Mass Screening
37 Neoplasm
38 Thyroid Gland
39 breast
40 cancer therapy
41 diagnosis
42 drug
43 gene
44 glioma
45 human cancer
46 invention
47 kidney
48 leukemia
49 lymphoma
50 melanoma
51 method
52 mutation
53 ovary
54 pancreas
55 predisposition
56 prognosis
57 protein
58 rectum
59 replacement therapy
60 somatic mutation
61 stomach
62 testis
63 therapy
64 tumor suppressor
65 tumor suppressor gene
66 uterus
67 schema:name Methods for detecting predisposition to cancer at the MTS gene
68 schema:recipient https://www.grid.ac/institutes/grid.223827.e
69 https://www.grid.ac/institutes/grid.420032.7
70 schema:sameAs https://app.dimensions.ai/details/patent/US-5989815-A
71 schema:sdDatePublished 2019-03-07T15:36
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Na344268f978e42edab3b72cfe42a2805
74 sgo:license sg:explorer/license/
75 sgo:sdDataset patents
76 rdf:type sgo:Patent
77 N24d8158ba8f847e58cb91b65d81b9dc3 rdf:first N6912bf88f6cf4910a507deeafb24dda4
78 rdf:rest N7cb6dc2b77584df2b3dcfc0fdd7f1633
79 N6912bf88f6cf4910a507deeafb24dda4 schema:name Lisa A. Cannon-Albright
80 rdf:type schema:Person
81 N7cb6dc2b77584df2b3dcfc0fdd7f1633 rdf:first Na7c5038c280c42fbbc79a87f9e204250
82 rdf:rest rdf:nil
83 N80dccf04ef4145d2b1ec5fa16db424c1 schema:name Mark H. Skolnick
84 rdf:type schema:Person
85 Na344268f978e42edab3b72cfe42a2805 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Na7c5038c280c42fbbc79a87f9e204250 schema:name Alexander Kamb
88 rdf:type schema:Person
89 Nd865d5ea886d4d57b07ecb2c630afcc2 rdf:first N80dccf04ef4145d2b1ec5fa16db424c1
90 rdf:rest N24d8158ba8f847e58cb91b65d81b9dc3
91 anzsrc-for:3142 schema:inDefinedTermSet anzsrc-for:
92 rdf:type schema:DefinedTerm
93 sg:pub.10.1038/350512a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014976902
94 https://doi.org/10.1038/350512a0
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/366634a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044157091
97 https://doi.org/10.1038/366634a0
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/366701a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020218634
100 https://doi.org/10.1038/366701a0
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/366704a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015821919
103 https://doi.org/10.1038/366704a0
104 rdf:type schema:CreativeWork
105 sg:pub.10.1038/366707a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000182688
106 https://doi.org/10.1038/366707a0
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/368753a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045854758
109 https://doi.org/10.1038/368753a0
110 rdf:type schema:CreativeWork
111 sg:pub.10.1038/371257a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045553304
112 https://doi.org/10.1038/371257a0
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/ng0994-22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042277853
115 https://doi.org/10.1038/ng0994-22
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1006/geno.1994.1491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009692223
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0092-8674(93)90528-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035145585
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0092-8674(93)90636-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009780866
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1073/pnas.89.19.9146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009445669
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1073/pnas.89.21.10557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028417988
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1073/pnas.91.16.7563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052984242
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1073/pnas.91.2.709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029903810
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1096/fasebj.7.10.8344488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082766700
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1097/00008390-199212000-00007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021281765
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1101/gad.3.7.1086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002444082
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.1439824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062482274
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.1659742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062497986
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1126/science.2683075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062550418
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1126/science.8153613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652951
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.8153634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062652972
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.8266092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653900
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.8278804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062653941
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.223827.e schema:Organization
152 https://www.grid.ac/institutes/grid.420032.7 schema:Organization
 




Preview window. Press ESC to close (or click here)


...