Subtilisin variants capable of cleaving substrates containing dibasic residues


Ontology type: sgo:Patent     


Patent Info

DATE

1998-07-14T00:00

AUTHORS

Marcus D. Ballinger , James A. Wells

ABSTRACT

The bacterial serine protease, subtilisin BPN', has been mutated so that it will efficiently and selectively cleave substrates containing dibasic residues. A combination mutant, where Asn 62 was changed to Asp and Gly 166 was changed to Asp (N62D/G166D), had a larger than additive shift in specificity toward dibasic substrates. Suitable substrates of the variant subtilisin were revealed by sorting a library of phage particles (substrate phage) containing five contiguous randomized residues. This method identified a particularly good substrate, Asn-Leu-Met-Arg-Lys-, that was selectively cleaved in the context of a fusion protein by the N62D/G166D subtilisin variant. Accordingly, this variant subtilisin may be useful for cleaving fusion proteins with dibasic substrate linkers and processing hormones or other proteins (in vitro or in vivo) that contain dibasic cleavage sites. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2581", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Marcus D. Ballinger", 
        "type": "Person"
      }, 
      {
        "name": "James A. Wells", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1994.tb18864.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009916613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.15.5167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010601977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02906260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011822303", 
          "https://doi.org/10.1007/bf02906260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02906260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011822303", 
          "https://doi.org/10.1007/bf02906260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/334270a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015697048", 
          "https://doi.org/10.1038/334270a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(93)80417-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016106768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560030805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017565792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1972.tb01754.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019632595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00215583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020119678", 
          "https://doi.org/10.1007/bf00215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00215583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020119678", 
          "https://doi.org/10.1007/bf00215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340060306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020642327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340060306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020642327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0293-182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020789725", 
          "https://doi.org/10.1038/nbt0293-182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.14.4961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020893638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.23.9378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023272540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01025226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023654957", 
          "https://doi.org/10.1007/bf01025226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.111.6.2851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028966759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328496a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033580843", 
          "https://doi.org/10.1038/328496a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.5.1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033856071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.270.22.13277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044454331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.3.922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052321624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00056a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055159065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00167a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055163499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00417a058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055174957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00763a009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055187777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00773a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055188062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/11.22.7911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059931649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/4.7.719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059980657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/7.7.911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059981097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1546324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062490331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.233.4764.659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062532863"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-07-14T00:00", 
    "description": "

The bacterial serine protease, subtilisin BPN', has been mutated so that it will efficiently and selectively cleave substrates containing dibasic residues. A combination mutant, where Asn 62 was changed to Asp and Gly 166 was changed to Asp (N62D/G166D), had a larger than additive shift in specificity toward dibasic substrates. Suitable substrates of the variant subtilisin were revealed by sorting a library of phage particles (substrate phage) containing five contiguous randomized residues. This method identified a particularly good substrate, Asn-Leu-Met-Arg-Lys-, that was selectively cleaved in the context of a fusion protein by the N62D/G166D subtilisin variant. Accordingly, this variant subtilisin may be useful for cleaving fusion proteins with dibasic substrate linkers and processing hormones or other proteins (in vitro or in vivo) that contain dibasic cleavage sites.

", "id": "sg:patent.US-5780285-A", "keywords": [ "subtilisin", "substrate", "residue", "serine protease", "Viperidae", "additive", "Sensitivity and Specificity", "sorting", "library", "phage particle", "method", "good substrate", "Asn", "fusion protein", "processing", "protein", "vitro", "vivo", "cleavage site" ], "name": "Subtilisin variants capable of cleaving substrates containing dibasic residues", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.418158.1", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-5780285-A" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:26", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03044.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-5780285-A'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-5780285-A'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-5780285-A'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-5780285-A'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      15 PREDICATES      61 URIs      27 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-5780285-A schema:about anzsrc-for:2581
2 schema:author N1ccff83c25d243eb8d6f035a562f6b54
3 schema:citation sg:pub.10.1007/bf00215583
4 sg:pub.10.1007/bf01025226
5 sg:pub.10.1007/bf02906260
6 sg:pub.10.1038/328496a0
7 sg:pub.10.1038/334270a0
8 sg:pub.10.1038/nbt0293-182
9 https://doi.org/10.1002/pro.5560030805
10 https://doi.org/10.1002/prot.340060306
11 https://doi.org/10.1016/0014-5793(93)80417-s
12 https://doi.org/10.1021/bi00056a001
13 https://doi.org/10.1021/bi00167a029
14 https://doi.org/10.1021/bi00417a058
15 https://doi.org/10.1021/bi00763a009
16 https://doi.org/10.1021/bi00773a016
17 https://doi.org/10.1073/pnas.84.15.5167
18 https://doi.org/10.1073/pnas.84.5.1219
19 https://doi.org/10.1073/pnas.85.14.4961
20 https://doi.org/10.1073/pnas.87.23.9378
21 https://doi.org/10.1073/pnas.89.3.922
22 https://doi.org/10.1074/jbc.270.22.13277
23 https://doi.org/10.1083/jcb.111.6.2851
24 https://doi.org/10.1093/nar/11.22.7911
25 https://doi.org/10.1093/protein/4.7.719
26 https://doi.org/10.1093/protein/7.7.911
27 https://doi.org/10.1111/j.1432-1033.1972.tb01754.x
28 https://doi.org/10.1111/j.1432-1033.1994.tb18864.x
29 https://doi.org/10.1126/science.1546324
30 https://doi.org/10.1126/science.233.4764.659
31 schema:datePublished 1998-07-14T00:00
32 schema:description <p>The bacterial serine protease, subtilisin BPN', has been mutated so that it will efficiently and selectively cleave substrates containing dibasic residues. A combination mutant, where Asn 62 was changed to Asp and Gly 166 was changed to Asp (N62D/G166D), had a larger than additive shift in specificity toward dibasic substrates. Suitable substrates of the variant subtilisin were revealed by sorting a library of phage particles (substrate phage) containing five contiguous randomized residues. This method identified a particularly good substrate, Asn-Leu-Met-Arg-Lys-, that was selectively cleaved in the context of a fusion protein by the N62D/G166D subtilisin variant. Accordingly, this variant subtilisin may be useful for cleaving fusion proteins with dibasic substrate linkers and processing hormones or other proteins (in vitro or in vivo) that contain dibasic cleavage sites.</p>
33 schema:keywords Asn
34 Sensitivity and Specificity
35 Viperidae
36 additive
37 cleavage site
38 fusion protein
39 good substrate
40 library
41 method
42 phage particle
43 processing
44 protein
45 residue
46 serine protease
47 sorting
48 substrate
49 subtilisin
50 vitro
51 vivo
52 schema:name Subtilisin variants capable of cleaving substrates containing dibasic residues
53 schema:recipient https://www.grid.ac/institutes/grid.418158.1
54 schema:sameAs https://app.dimensions.ai/details/patent/US-5780285-A
55 schema:sdDatePublished 2019-04-18T10:26
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N6dd2d43f97d4405e936b2155399c58c9
58 sgo:license sg:explorer/license/
59 sgo:sdDataset patents
60 rdf:type sgo:Patent
61 N00d9e9f9bd234ece93702cd482ce6f15 rdf:first Nbc14bb831ed143e6a02d1111122558fb
62 rdf:rest rdf:nil
63 N1ccff83c25d243eb8d6f035a562f6b54 rdf:first N9dffb155fbed4b8181296039b2779dcc
64 rdf:rest N00d9e9f9bd234ece93702cd482ce6f15
65 N6dd2d43f97d4405e936b2155399c58c9 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N9dffb155fbed4b8181296039b2779dcc schema:name Marcus D. Ballinger
68 rdf:type schema:Person
69 Nbc14bb831ed143e6a02d1111122558fb schema:name James A. Wells
70 rdf:type schema:Person
71 anzsrc-for:2581 schema:inDefinedTermSet anzsrc-for:
72 rdf:type schema:DefinedTerm
73 sg:pub.10.1007/bf00215583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020119678
74 https://doi.org/10.1007/bf00215583
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01025226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023654957
77 https://doi.org/10.1007/bf01025226
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf02906260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011822303
80 https://doi.org/10.1007/bf02906260
81 rdf:type schema:CreativeWork
82 sg:pub.10.1038/328496a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033580843
83 https://doi.org/10.1038/328496a0
84 rdf:type schema:CreativeWork
85 sg:pub.10.1038/334270a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015697048
86 https://doi.org/10.1038/334270a0
87 rdf:type schema:CreativeWork
88 sg:pub.10.1038/nbt0293-182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020789725
89 https://doi.org/10.1038/nbt0293-182
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/pro.5560030805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017565792
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/prot.340060306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020642327
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0014-5793(93)80417-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1016106768
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1021/bi00056a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055159065
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1021/bi00167a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055163499
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1021/bi00417a058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055174957
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/bi00763a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055187777
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/bi00773a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055188062
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1073/pnas.84.15.5167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010601977
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1073/pnas.84.5.1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033856071
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1073/pnas.85.14.4961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020893638
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1073/pnas.87.23.9378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023272540
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1073/pnas.89.3.922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052321624
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1074/jbc.270.22.13277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044454331
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1083/jcb.111.6.2851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028966759
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1093/nar/11.22.7911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059931649
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1093/protein/4.7.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059980657
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1093/protein/7.7.911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059981097
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1432-1033.1972.tb01754.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019632595
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.1432-1033.1994.tb18864.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009916613
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.1546324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062490331
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1126/science.233.4764.659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532863
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.418158.1 schema:Organization
 




Preview window. Press ESC to close (or click here)


...