Subtilisin variants capable of cleaving substrates containing dibasic residues


Ontology type: sgo:Patent     


Patent Info

DATE

1998-04-21T00:00

AUTHORS

Marcus D. Ballinger , James A. Wells

ABSTRACT

The bacterial serine protease, subtilisin BPN', has been mutated so that it will efficiently and selectively cleave substrates containing dibasic residues. A combination mutant, where Asn 62 was changed to Asp and Gly 166 was changed to Asp (N62D/G166D), had a larger than additive shift in specificity toward dibasic substrates. Suitable substrates of the variant subtilisin were revealed by sorting a library of phage particles (substrate phage) containing five contiguous randomized residues. This method identified a particularly good substrate, Asn-Leu-Met-Arg-Lys-, that was selectively cleaved in the context of a fusion protein by the N62D/G166D subtilisin variant. Accordingly, this variant subtilisin may be useful for cleaving fusion proteins with dibasic substrate linkers and processing hormones or other proteins (in vitro or in vivo) that contain dibasic cleavage sites. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2581", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Marcus D. Ballinger", 
        "type": "Person"
      }, 
      {
        "name": "James A. Wells", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1994.tb18864.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009916613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.15.5167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010601977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02906260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011822303", 
          "https://doi.org/10.1007/bf02906260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02906260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011822303", 
          "https://doi.org/10.1007/bf02906260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/334270a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015697048", 
          "https://doi.org/10.1038/334270a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(93)80417-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016106768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560030805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017565792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1972.tb01754.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019632595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00215583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020119678", 
          "https://doi.org/10.1007/bf00215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00215583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020119678", 
          "https://doi.org/10.1007/bf00215583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340060306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020642327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340060306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020642327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt0293-182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020789725", 
          "https://doi.org/10.1038/nbt0293-182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.14.4961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020893638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.87.23.9378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023272540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01025226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023654957", 
          "https://doi.org/10.1007/bf01025226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.111.6.2851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028966759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/328496a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033580843", 
          "https://doi.org/10.1038/328496a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.84.5.1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033856071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.270.22.13277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044454331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.3.922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052321624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00056a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055159065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00167a029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055163499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00417a058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055174957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00763a009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055187777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00773a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055188062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/11.22.7911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059931649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/4.7.719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059980657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/7.7.911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059981097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1546324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062490331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.233.4764.659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062532863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/j.1460-2075.1986.tb04286.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079797862"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-04-21T00:00", 
    "description": "

The bacterial serine protease, subtilisin BPN', has been mutated so that it will efficiently and selectively cleave substrates containing dibasic residues. A combination mutant, where Asn 62 was changed to Asp and Gly 166 was changed to Asp (N62D/G166D), had a larger than additive shift in specificity toward dibasic substrates. Suitable substrates of the variant subtilisin were revealed by sorting a library of phage particles (substrate phage) containing five contiguous randomized residues. This method identified a particularly good substrate, Asn-Leu-Met-Arg-Lys-, that was selectively cleaved in the context of a fusion protein by the N62D/G166D subtilisin variant. Accordingly, this variant subtilisin may be useful for cleaving fusion proteins with dibasic substrate linkers and processing hormones or other proteins (in vitro or in vivo) that contain dibasic cleavage sites.

", "id": "sg:patent.US-5741664-A", "keywords": [ "subtilisin", "substrate", "residue", "serine protease", "Viperidae", "additive", "Sensitivity and Specificity", "sorting", "library", "phage particle", "method", "good substrate", "Asn", "fusion protein", "processing", "protein", "vitro", "vivo", "cleavage site" ], "name": "Subtilisin variants capable of cleaving substrates containing dibasic residues", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.418158.1", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-5741664-A" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:26", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_03041.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-5741664-A'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-5741664-A'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-5741664-A'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-5741664-A'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      15 PREDICATES      62 URIs      27 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-5741664-A schema:about anzsrc-for:2581
2 schema:author N85c737ff416d4301bb785f120ebe35ab
3 schema:citation sg:pub.10.1007/bf00215583
4 sg:pub.10.1007/bf01025226
5 sg:pub.10.1007/bf02906260
6 sg:pub.10.1038/328496a0
7 sg:pub.10.1038/334270a0
8 sg:pub.10.1038/nbt0293-182
9 https://doi.org/10.1002/j.1460-2075.1986.tb04286.x
10 https://doi.org/10.1002/pro.5560030805
11 https://doi.org/10.1002/prot.340060306
12 https://doi.org/10.1016/0014-5793(93)80417-s
13 https://doi.org/10.1021/bi00056a001
14 https://doi.org/10.1021/bi00167a029
15 https://doi.org/10.1021/bi00417a058
16 https://doi.org/10.1021/bi00763a009
17 https://doi.org/10.1021/bi00773a016
18 https://doi.org/10.1073/pnas.84.15.5167
19 https://doi.org/10.1073/pnas.84.5.1219
20 https://doi.org/10.1073/pnas.85.14.4961
21 https://doi.org/10.1073/pnas.87.23.9378
22 https://doi.org/10.1073/pnas.89.3.922
23 https://doi.org/10.1074/jbc.270.22.13277
24 https://doi.org/10.1083/jcb.111.6.2851
25 https://doi.org/10.1093/nar/11.22.7911
26 https://doi.org/10.1093/protein/4.7.719
27 https://doi.org/10.1093/protein/7.7.911
28 https://doi.org/10.1111/j.1432-1033.1972.tb01754.x
29 https://doi.org/10.1111/j.1432-1033.1994.tb18864.x
30 https://doi.org/10.1126/science.1546324
31 https://doi.org/10.1126/science.233.4764.659
32 schema:datePublished 1998-04-21T00:00
33 schema:description <p>The bacterial serine protease, subtilisin BPN', has been mutated so that it will efficiently and selectively cleave substrates containing dibasic residues. A combination mutant, where Asn 62 was changed to Asp and Gly 166 was changed to Asp (N62D/G166D), had a larger than additive shift in specificity toward dibasic substrates. Suitable substrates of the variant subtilisin were revealed by sorting a library of phage particles (substrate phage) containing five contiguous randomized residues. This method identified a particularly good substrate, Asn-Leu-Met-Arg-Lys-, that was selectively cleaved in the context of a fusion protein by the N62D/G166D subtilisin variant. Accordingly, this variant subtilisin may be useful for cleaving fusion proteins with dibasic substrate linkers and processing hormones or other proteins (in vitro or in vivo) that contain dibasic cleavage sites.</p>
34 schema:keywords Asn
35 Sensitivity and Specificity
36 Viperidae
37 additive
38 cleavage site
39 fusion protein
40 good substrate
41 library
42 method
43 phage particle
44 processing
45 protein
46 residue
47 serine protease
48 sorting
49 substrate
50 subtilisin
51 vitro
52 vivo
53 schema:name Subtilisin variants capable of cleaving substrates containing dibasic residues
54 schema:recipient https://www.grid.ac/institutes/grid.418158.1
55 schema:sameAs https://app.dimensions.ai/details/patent/US-5741664-A
56 schema:sdDatePublished 2019-04-18T10:26
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N7364db583894489c8db4957c292b6278
59 sgo:license sg:explorer/license/
60 sgo:sdDataset patents
61 rdf:type sgo:Patent
62 N39e9ce9b10f0447190e99237dab281bc schema:name Marcus D. Ballinger
63 rdf:type schema:Person
64 N5521d33c4b4042b79d71f7280a39ee5a schema:name James A. Wells
65 rdf:type schema:Person
66 N7364db583894489c8db4957c292b6278 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N85c737ff416d4301bb785f120ebe35ab rdf:first N39e9ce9b10f0447190e99237dab281bc
69 rdf:rest N9fc2462614c64499a9db678817c0e174
70 N9fc2462614c64499a9db678817c0e174 rdf:first N5521d33c4b4042b79d71f7280a39ee5a
71 rdf:rest rdf:nil
72 anzsrc-for:2581 schema:inDefinedTermSet anzsrc-for:
73 rdf:type schema:DefinedTerm
74 sg:pub.10.1007/bf00215583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020119678
75 https://doi.org/10.1007/bf00215583
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf01025226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023654957
78 https://doi.org/10.1007/bf01025226
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf02906260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011822303
81 https://doi.org/10.1007/bf02906260
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/328496a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033580843
84 https://doi.org/10.1038/328496a0
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/334270a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015697048
87 https://doi.org/10.1038/334270a0
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/nbt0293-182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020789725
90 https://doi.org/10.1038/nbt0293-182
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1002/j.1460-2075.1986.tb04286.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079797862
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/pro.5560030805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017565792
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1002/prot.340060306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020642327
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0014-5793(93)80417-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1016106768
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1021/bi00056a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055159065
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1021/bi00167a029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055163499
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/bi00417a058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055174957
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/bi00763a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055187777
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1021/bi00773a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055188062
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1073/pnas.84.15.5167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010601977
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1073/pnas.84.5.1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033856071
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1073/pnas.85.14.4961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020893638
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1073/pnas.87.23.9378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023272540
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1073/pnas.89.3.922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052321624
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1074/jbc.270.22.13277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044454331
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1083/jcb.111.6.2851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028966759
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1093/nar/11.22.7911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059931649
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1093/protein/4.7.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059980657
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1093/protein/7.7.911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059981097
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1111/j.1432-1033.1972.tb01754.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019632595
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1111/j.1432-1033.1994.tb18864.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009916613
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1126/science.1546324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062490331
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1126/science.233.4764.659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532863
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.418158.1 schema:Organization
 




Preview window. Press ESC to close (or click here)


...