Dynamic high pressure process for fabricating superconducting and permanent magnetic materials


Ontology type: sgo:Patent     


Patent Info

DATE

1990-03-13T00:00

AUTHORS

William J. Nellis , Theodore H. Geballe , M. Brian Maple

ABSTRACT

Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures.The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80°-100° K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder. More... »

Related SciGraph Publications

  • 1979-10. A new powder metallurgy method in JOURNAL OF MATERIALS SCIENCE
  • 1981-03. The properties of stainless steel compacted dynamically to produce cold interparticle welding in JOURNAL OF MATERIALS SCIENCE
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "William J. Nellis", 
            "type": "Person"
          }, 
          {
            "name": "Theodore H. Geballe", 
            "type": "Person"
          }, 
          {
            "name": "M. Brian Maple", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00737047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008592555", 
              "https://doi.org/10.1007/bf00737047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00737047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008592555", 
              "https://doi.org/10.1007/bf00737047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00737047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008592555", 
              "https://doi.org/10.1007/bf00737047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02402774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027388109", 
              "https://doi.org/10.1007/bf02402774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02402774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027388109", 
              "https://doi.org/10.1007/bf02402774"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1990-03-13T00:00", 
        "description": "

    Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures.

    The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80°-100° K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.

    ", "id": "sg:patent.US-4907731-A", "keywords": [ "high pressure", "superconducting", "magnetic material", "shock wave", "thin layer", "magnetic property", "microstructure", "material fabrication", "powder", "solid", "consolidation", "temperature", "quench" ], "name": "Dynamic high pressure process for fabricating superconducting and permanent magnetic materials", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.85084.31", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-4907731-A" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:26", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_02958.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-4907731-A'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-4907731-A'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-4907731-A'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-4907731-A'


     

    This table displays all metadata directly associated to this object as RDF triples.

    54 TRIPLES      15 PREDICATES      30 URIs      21 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-4907731-A schema:about anzsrc-for:2401
    2 anzsrc-for:2921
    3 schema:author N0331ed17a8ed4d58ad000a05cd8432e8
    4 schema:citation sg:pub.10.1007/bf00737047
    5 sg:pub.10.1007/bf02402774
    6 schema:datePublished 1990-03-13T00:00
    7 schema:description <p>Shock wave formation of thin layers of materials with improved superconducting and permanent magnetic properties and improved microstructures.</p><p>The material fabrication system includes a sandwiched structure including a powder material placed between two solid members to enable explosive shock consolidation. The two solid members are precooled to about 80&#176;-100&#176; K. to reduce the residual temperatures attained as a result of the shock wave treatment, and thereby increase the quench rate of the consolidated powder.</p>
    8 schema:keywords consolidation
    9 high pressure
    10 magnetic material
    11 magnetic property
    12 material fabrication
    13 microstructure
    14 powder
    15 quench
    16 shock wave
    17 solid
    18 superconducting
    19 temperature
    20 thin layer
    21 schema:name Dynamic high pressure process for fabricating superconducting and permanent magnetic materials
    22 schema:recipient https://www.grid.ac/institutes/grid.85084.31
    23 schema:sameAs https://app.dimensions.ai/details/patent/US-4907731-A
    24 schema:sdDatePublished 2019-04-18T10:26
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Na97e4320dfd54bbf90f0efd10555ec0b
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset patents
    29 rdf:type sgo:Patent
    30 N0331ed17a8ed4d58ad000a05cd8432e8 rdf:first N184d7d7d91bf42aca78f226ee27e5d19
    31 rdf:rest N9a86cd3967a44384b0cfd964e437e770
    32 N184d7d7d91bf42aca78f226ee27e5d19 schema:name William J. Nellis
    33 rdf:type schema:Person
    34 N4bc65b0c311244f0b5a66181e56db79c schema:name M. Brian Maple
    35 rdf:type schema:Person
    36 N9a86cd3967a44384b0cfd964e437e770 rdf:first Nb5138df2f4af4da490b13f02a6831709
    37 rdf:rest Nbc6e7e0d910e438f8d7d922752944cb3
    38 Na97e4320dfd54bbf90f0efd10555ec0b schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 Nb5138df2f4af4da490b13f02a6831709 schema:name Theodore H. Geballe
    41 rdf:type schema:Person
    42 Nbc6e7e0d910e438f8d7d922752944cb3 rdf:first N4bc65b0c311244f0b5a66181e56db79c
    43 rdf:rest rdf:nil
    44 anzsrc-for:2401 schema:inDefinedTermSet anzsrc-for:
    45 rdf:type schema:DefinedTerm
    46 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
    47 rdf:type schema:DefinedTerm
    48 sg:pub.10.1007/bf00737047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008592555
    49 https://doi.org/10.1007/bf00737047
    50 rdf:type schema:CreativeWork
    51 sg:pub.10.1007/bf02402774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027388109
    52 https://doi.org/10.1007/bf02402774
    53 rdf:type schema:CreativeWork
    54 https://www.grid.ac/institutes/grid.85084.31 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...