Active Machine Learning


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

David Maxwell Chickering , Christopher A. Meek , Patrice Y. Simard , Rishabh Krishnan Iyer

ABSTRACT

Technologies are described herein for active machine learning. An active machine learning method can include initiating active machine learning through an active machine learning system configured to train an auxiliary machine learning model to produce at least one new labeled observation, refining a capacity of a target machine learning model based on the active machine learning, and retraining the auxiliary machine learning model with the at least one new labeled observation subsequent to refining the capacity of the target machine learning model. Additionally, the target machine learning model is a limited-capacity machine learning model according to the description provided herein. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "David Maxwell Chickering", 
        "type": "Person"
      }, 
      {
        "name": "Christopher A. Meek", 
        "type": "Person"
      }, 
      {
        "name": "Patrice Y. Simard", 
        "type": "Person"
      }, 
      {
        "name": "Rishabh Krishnan Iyer", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:mach.0000011805.60520.fe", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040320466", 
          "https://doi.org/10.1023/b:mach.0000011805.60520.fe"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2012.2183879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643112"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Technologies are described herein for active machine learning. An active machine learning method can include initiating active machine learning through an active machine learning system configured to train an auxiliary machine learning model to produce at least one new labeled observation, refining a capacity of a target machine learning model based on the active machine learning, and retraining the auxiliary machine learning model with the at least one new labeled observation subsequent to refining the capacity of the target machine learning model. Additionally, the target machine learning model is a limited-capacity machine learning model according to the description provided herein.

", "id": "sg:patent.US-20160162802-A1", "keywords": [ "Learning", "technology", "machine", "method", "observation", "refining", "capacity", "limited capacity" ], "name": "Active Machine Learning", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.419815.0", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-20160162802-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:35", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b7bdf8d8.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-20160162802-A1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-20160162802-A1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-20160162802-A1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-20160162802-A1'


 

This table displays all metadata directly associated to this object as RDF triples.

48 TRIPLES      14 PREDICATES      23 URIs      15 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-20160162802-A1 schema:about anzsrc-for:2746
2 schema:author N45a29b7f4b8b4d43860e8ab0cc400934
3 schema:citation sg:pub.10.1023/b:mach.0000011805.60520.fe
4 https://doi.org/10.1109/tip.2012.2183879
5 schema:description <p id="p-0001" num="0000">Technologies are described herein for active machine learning. An active machine learning method can include initiating active machine learning through an active machine learning system configured to train an auxiliary machine learning model to produce at least one new labeled observation, refining a capacity of a target machine learning model based on the active machine learning, and retraining the auxiliary machine learning model with the at least one new labeled observation subsequent to refining the capacity of the target machine learning model. Additionally, the target machine learning model is a limited-capacity machine learning model according to the description provided herein.</p>
6 schema:keywords Learning
7 capacity
8 limited capacity
9 machine
10 method
11 observation
12 refining
13 technology
14 schema:name Active Machine Learning
15 schema:recipient https://www.grid.ac/institutes/grid.419815.0
16 schema:sameAs https://app.dimensions.ai/details/patent/US-20160162802-A1
17 schema:sdDatePublished 2019-03-07T15:35
18 schema:sdLicense https://scigraph.springernature.com/explorer/license/
19 schema:sdPublisher N115ccb127b604c63ad32bde1f23c4d37
20 sgo:license sg:explorer/license/
21 sgo:sdDataset patents
22 rdf:type sgo:Patent
23 N00228ae259824a4b8ddbfcf2d2f403f8 schema:name David Maxwell Chickering
24 rdf:type schema:Person
25 N115ccb127b604c63ad32bde1f23c4d37 schema:name Springer Nature - SN SciGraph project
26 rdf:type schema:Organization
27 N13f4d1b9b50948ea8c3c8172db5ee9f6 rdf:first Nfb71b63d4f57403ea8b41fd62201a31b
28 rdf:rest Ne9d1350001b94fe0bd14db1dc36859d2
29 N161a502a63c54fdd8fb7134ffbc53236 schema:name Christopher A. Meek
30 rdf:type schema:Person
31 N3055466e3a4847c6bc14d414ccfd82c9 schema:name Rishabh Krishnan Iyer
32 rdf:type schema:Person
33 N45a29b7f4b8b4d43860e8ab0cc400934 rdf:first N00228ae259824a4b8ddbfcf2d2f403f8
34 rdf:rest Ndec719cee9f742f597a48b70ce604850
35 Ndec719cee9f742f597a48b70ce604850 rdf:first N161a502a63c54fdd8fb7134ffbc53236
36 rdf:rest N13f4d1b9b50948ea8c3c8172db5ee9f6
37 Ne9d1350001b94fe0bd14db1dc36859d2 rdf:first N3055466e3a4847c6bc14d414ccfd82c9
38 rdf:rest rdf:nil
39 Nfb71b63d4f57403ea8b41fd62201a31b schema:name Patrice Y. Simard
40 rdf:type schema:Person
41 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
42 rdf:type schema:DefinedTerm
43 sg:pub.10.1023/b:mach.0000011805.60520.fe schema:sameAs https://app.dimensions.ai/details/publication/pub.1040320466
44 https://doi.org/10.1023/b:mach.0000011805.60520.fe
45 rdf:type schema:CreativeWork
46 https://doi.org/10.1109/tip.2012.2183879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643112
47 rdf:type schema:CreativeWork
48 https://www.grid.ac/institutes/grid.419815.0 schema:Organization
 




Preview window. Press ESC to close (or click here)


...