Method and Apparatus for Learning-Enhanced Atlas-Based Auto-Segmentation


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Xiao Han

ABSTRACT

Disclosed herein are techniques for enhancing the accuracy of atlas-based auto-segmentation (ABAS) using an automated structure classifier that was trained using a machine learning algorithm. Also disclosed is a technique for training the automated structure classifier using atlas data applied to the machine learning algorithm.

Related SciGraph Publications

  • 1999-06-25. ANIMAL+INSECT: Improved Cortical Structure Segmentation in INFORMATION PROCESSING IN MEDICAL IMAGING
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Xiao Han", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/3-540-48714-x_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048674083", 
              "https://doi.org/10.1007/3-540-48714-x_16"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    Disclosed herein are techniques for enhancing the accuracy of atlas-based auto-segmentation (ABAS) using an automated structure classifier that was trained using a machine learning algorithm. Also disclosed is a technique for training the automated structure classifier using atlas data applied to the machine learning algorithm.

    ", "id": "sg:patent.US-20150356367-A1", "keywords": [ "method", "apparatus", "segmentation", "technique", "accuracy", "classifier", "machine", "algorithm", "atlas" ], "name": "Method and Apparatus for Learning-Enhanced Atlas-Based Auto-Segmentation", "sameAs": [ "https://app.dimensions.ai/details/patent/US-20150356367-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:31", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_0db08f31.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-20150356367-A1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-20150356367-A1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-20150356367-A1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-20150356367-A1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    32 TRIPLES      13 PREDICATES      22 URIs      16 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-20150356367-A1 schema:about anzsrc-for:2746
    2 schema:author N864989f995d64541a438d7ba49e11b76
    3 schema:citation sg:pub.10.1007/3-540-48714-x_16
    4 schema:description <p id="p-0001" num="0000">Disclosed herein are techniques for enhancing the accuracy of atlas-based auto-segmentation (ABAS) using an automated structure classifier that was trained using a machine learning algorithm. Also disclosed is a technique for training the automated structure classifier using atlas data applied to the machine learning algorithm.</p>
    5 schema:keywords accuracy
    6 algorithm
    7 apparatus
    8 atlas
    9 classifier
    10 machine
    11 method
    12 segmentation
    13 technique
    14 schema:name Method and Apparatus for Learning-Enhanced Atlas-Based Auto-Segmentation
    15 schema:sameAs https://app.dimensions.ai/details/patent/US-20150356367-A1
    16 schema:sdDatePublished 2019-03-07T15:31
    17 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    18 schema:sdPublisher N0a79a97b473d4f9eb3de743abea249af
    19 sgo:license sg:explorer/license/
    20 sgo:sdDataset patents
    21 rdf:type sgo:Patent
    22 N0a79a97b473d4f9eb3de743abea249af schema:name Springer Nature - SN SciGraph project
    23 rdf:type schema:Organization
    24 N864989f995d64541a438d7ba49e11b76 rdf:first Naf5835c3aad54d6ca39b2ececfcbb0f8
    25 rdf:rest rdf:nil
    26 Naf5835c3aad54d6ca39b2ececfcbb0f8 schema:name Xiao Han
    27 rdf:type schema:Person
    28 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    29 rdf:type schema:DefinedTerm
    30 sg:pub.10.1007/3-540-48714-x_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048674083
    31 https://doi.org/10.1007/3-540-48714-x_16
    32 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...