Integrated Machine Learning For A Data Management Product


Ontology type: sgo:Patent     


Patent Info

DATE

2014-07-10T00:00

AUTHORS

Kelly D. Phillipps , Richard W. Wellman , Milind D. Zodge

ABSTRACT

Apparatuses, systems, methods, and computer program products are disclosed for machine learning in a data management product. The apparatus includes an input module, a learned function module, and a results module. The input module is configured to receive an analysis request for the data management product. The learned function module is configured to execute one or more machine learning ensembles to predict one or more unknown values for the data management product. The result module is configured to provide native access, within the data management product, to the one or more unknown values. More... »

Related SciGraph Publications

  • 2001-11. Cost Complexity-Based Pruning of Ensemble Classifiers in KNOWLEDGE AND INFORMATION SYSTEMS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Kelly D. Phillipps", 
            "type": "Person"
          }, 
          {
            "name": "Richard W. Wellman", 
            "type": "Person"
          }, 
          {
            "name": "Milind D. Zodge", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ygeno.2011.03.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003505562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.artmed.2011.11.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010443525"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00011678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027649233", 
              "https://doi.org/10.1007/pl00011678"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-07-10T00:00", 
        "description": "

    Apparatuses, systems, methods, and computer program products are disclosed for machine learning in a data management product. The apparatus includes an input module, a learned function module, and a results module. The input module is configured to receive an analysis request for the data management product. The learned function module is configured to execute one or more machine learning ensembles to predict one or more unknown values for the data management product. The result module is configured to provide native access, within the data management product, to the one or more unknown values.

    ", "id": "sg:patent.US-20140195466-A1", "keywords": [ "data management", "apparatus", "method", "computer", "machine", "module", "request", "ensemble", "access" ], "name": "INTEGRATED MACHINE LEARNING FOR A DATA MANAGEMENT PRODUCT", "sameAs": [ "https://app.dimensions.ai/details/patent/US-20140195466-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:13", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00804.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-20140195466-A1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-20140195466-A1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-20140195466-A1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-20140195466-A1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    47 TRIPLES      14 PREDICATES      25 URIs      17 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-20140195466-A1 schema:about anzsrc-for:2746
    2 schema:author Nc7f6f8d30db24955b0fc49fb248654a5
    3 schema:citation sg:pub.10.1007/pl00011678
    4 https://doi.org/10.1016/j.artmed.2011.11.006
    5 https://doi.org/10.1016/j.ygeno.2011.03.001
    6 schema:datePublished 2014-07-10T00:00
    7 schema:description <p id="p-0001" num="0000">Apparatuses, systems, methods, and computer program products are disclosed for machine learning in a data management product. The apparatus includes an input module, a learned function module, and a results module. The input module is configured to receive an analysis request for the data management product. The learned function module is configured to execute one or more machine learning ensembles to predict one or more unknown values for the data management product. The result module is configured to provide native access, within the data management product, to the one or more unknown values.</p>
    8 schema:keywords access
    9 apparatus
    10 computer
    11 data management
    12 ensemble
    13 machine
    14 method
    15 module
    16 request
    17 schema:name INTEGRATED MACHINE LEARNING FOR A DATA MANAGEMENT PRODUCT
    18 schema:sameAs https://app.dimensions.ai/details/patent/US-20140195466-A1
    19 schema:sdDatePublished 2019-04-18T10:13
    20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    21 schema:sdPublisher N7d458f3edd2d42cebfdef7fe436c8a3e
    22 sgo:license sg:explorer/license/
    23 sgo:sdDataset patents
    24 rdf:type sgo:Patent
    25 N1b60ef3e4d654d22accd44d250a32401 rdf:first N988a052b64d546b694a8a0ffdfd03247
    26 rdf:rest N4047c3b8f2c6422e8e940f084db162a3
    27 N2e94279ccf8e4db090348cce4a16aea0 schema:name Milind D. Zodge
    28 rdf:type schema:Person
    29 N4047c3b8f2c6422e8e940f084db162a3 rdf:first N2e94279ccf8e4db090348cce4a16aea0
    30 rdf:rest rdf:nil
    31 N770ea1127d9a4b60aadd9a3060f06623 schema:name Kelly D. Phillipps
    32 rdf:type schema:Person
    33 N7d458f3edd2d42cebfdef7fe436c8a3e schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N988a052b64d546b694a8a0ffdfd03247 schema:name Richard W. Wellman
    36 rdf:type schema:Person
    37 Nc7f6f8d30db24955b0fc49fb248654a5 rdf:first N770ea1127d9a4b60aadd9a3060f06623
    38 rdf:rest N1b60ef3e4d654d22accd44d250a32401
    39 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    40 rdf:type schema:DefinedTerm
    41 sg:pub.10.1007/pl00011678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027649233
    42 https://doi.org/10.1007/pl00011678
    43 rdf:type schema:CreativeWork
    44 https://doi.org/10.1016/j.artmed.2011.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010443525
    45 rdf:type schema:CreativeWork
    46 https://doi.org/10.1016/j.ygeno.2011.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003505562
    47 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...