Machine Learning For Power Grid


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Roger N. Anderson , Albert Boulanger , Cynthia Rudin , David Waltz , Ansaf Salleb-Aouissi , Maggie Chow , Haimonti Dutta , Phil Gross , Huang Bert , Steve Ierome , Delfina Isaac , Arthur Kressner , Rebecca J. Passonneau , Axinia Radeva , Leon L. Wu , Peter Hofmann , Frank Dougherty

ABSTRACT

A machine learning system for ranking a collection of filtered propensity to failure metrics of like components within an electrical grid that includes a raw data assembly to provide raw data representative of the like components within the electrical grid; (b) a data processor, operatively coupled to the raw data assembly, to convert the raw data to more uniform data via one or more data processing techniques; (c) a database, operatively coupled to the data processor, to store the more uniform data; (d) a machine learning engine, operatively coupled to the database, to provide a collection of propensity to failure metrics for the like components; (e) an evaluation engine, operatively coupled to the machine learning engine, to detect and remove non-complying metrics from the collection of propensity to failure metrics and to provide the collection of filtered propensity to failure metrics; and (f) a decision support application, operatively coupled to the evaluation engine, configured to display a ranking of the collection of filtered propensity to failure metrics of like components within the electrical grid. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Roger N. Anderson", 
        "type": "Person"
      }, 
      {
        "name": "Albert Boulanger", 
        "type": "Person"
      }, 
      {
        "name": "Cynthia Rudin", 
        "type": "Person"
      }, 
      {
        "name": "David Waltz", 
        "type": "Person"
      }, 
      {
        "name": "Ansaf Salleb-Aouissi", 
        "type": "Person"
      }, 
      {
        "name": "Maggie Chow", 
        "type": "Person"
      }, 
      {
        "name": "Haimonti Dutta", 
        "type": "Person"
      }, 
      {
        "name": "Phil Gross", 
        "type": "Person"
      }, 
      {
        "name": "Huang Bert", 
        "type": "Person"
      }, 
      {
        "name": "Steve Ierome", 
        "type": "Person"
      }, 
      {
        "name": "Delfina Isaac", 
        "type": "Person"
      }, 
      {
        "name": "Arthur Kressner", 
        "type": "Person"
      }, 
      {
        "name": "Rebecca J. Passonneau", 
        "type": "Person"
      }, 
      {
        "name": "Axinia Radeva", 
        "type": "Person"
      }, 
      {
        "name": "Leon L. Wu", 
        "type": "Person"
      }, 
      {
        "name": "Peter Hofmann", 
        "type": "Person"
      }, 
      {
        "name": "Frank Dougherty", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10994-009-5166-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029243296", 
          "https://doi.org/10.1007/s10994-009-5166-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2010.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041652907"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

A machine learning system for ranking a collection of filtered propensity to failure metrics of like components within an electrical grid that includes a raw data assembly to provide raw data representative of the like components within the electrical grid; (b) a data processor, operatively coupled to the raw data assembly, to convert the raw data to more uniform data via one or more data processing techniques; (c) a database, operatively coupled to the data processor, to store the more uniform data; (d) a machine learning engine, operatively coupled to the database, to provide a collection of propensity to failure metrics for the like components; (e) an evaluation engine, operatively coupled to the machine learning engine, to detect and remove non-complying metrics from the collection of propensity to failure metrics and to provide the collection of filtered propensity to failure metrics; and (f) a decision support application, operatively coupled to the evaluation engine, configured to display a ranking of the collection of filtered propensity to failure metrics of like components within the electrical grid.

", "id": "sg:patent.US-20130232094-A1", "keywords": [ "power grid", "machine", "ranking", "collection", "propensity", "failure", "component", "electrical grid", "data assembly", "raw data", "processor", "uniform", "data processing technique", "database", "engine", "Metronidazole" ], "name": "MACHINE LEARNING FOR POWER GRID", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.21729.3f", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.453554.6", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-20130232094-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:31", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_0db08f31.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-20130232094-A1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-20130232094-A1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-20130232094-A1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-20130232094-A1'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      14 PREDICATES      32 URIs      23 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-20130232094-A1 schema:about anzsrc-for:2746
2 schema:author Ndd124480cec2431ca96821475b1d63b0
3 schema:citation sg:pub.10.1007/s10994-009-5166-y
4 https://doi.org/10.1109/tpami.2010.8
5 schema:description <p id="p-0001" num="0000">A machine learning system for ranking a collection of filtered propensity to failure metrics of like components within an electrical grid that includes a raw data assembly to provide raw data representative of the like components within the electrical grid; (b) a data processor, operatively coupled to the raw data assembly, to convert the raw data to more uniform data via one or more data processing techniques; (c) a database, operatively coupled to the data processor, to store the more uniform data; (d) a machine learning engine, operatively coupled to the database, to provide a collection of propensity to failure metrics for the like components; (e) an evaluation engine, operatively coupled to the machine learning engine, to detect and remove non-complying metrics from the collection of propensity to failure metrics and to provide the collection of filtered propensity to failure metrics; and (f) a decision support application, operatively coupled to the evaluation engine, configured to display a ranking of the collection of filtered propensity to failure metrics of like components within the electrical grid.</p>
6 schema:keywords Metronidazole
7 collection
8 component
9 data assembly
10 data processing technique
11 database
12 electrical grid
13 engine
14 failure
15 machine
16 power grid
17 processor
18 propensity
19 ranking
20 raw data
21 uniform
22 schema:name MACHINE LEARNING FOR POWER GRID
23 schema:recipient https://www.grid.ac/institutes/grid.21729.3f
24 https://www.grid.ac/institutes/grid.453554.6
25 schema:sameAs https://app.dimensions.ai/details/patent/US-20130232094-A1
26 schema:sdDatePublished 2019-03-07T15:31
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N9ce87afeedc041cd8fad4b2d38ac6f61
29 sgo:license sg:explorer/license/
30 sgo:sdDataset patents
31 rdf:type sgo:Patent
32 N01ca54fc90934675adf655d188588d52 rdf:first Na3808d6ab658436eb3ca18c8fd9d3f2a
33 rdf:rest N0afcf53363ab4135ac8c223b5c78b8e9
34 N08ffd4afd05140a7af0c8b4810e98bc9 rdf:first Nfec432b781994ab89c30765a8aa73d36
35 rdf:rest rdf:nil
36 N0afcf53363ab4135ac8c223b5c78b8e9 rdf:first Nb6c6ae1a5a3f4ffab22501581e8e5eb6
37 rdf:rest N0b9fd4dcdf3e4081b3b1fe4c27b72495
38 N0b9fd4dcdf3e4081b3b1fe4c27b72495 rdf:first Ned1a8477c16c46deb50b79ed7cc8dceb
39 rdf:rest Nd1b0fac6cfce4a968d9fb62d5f2327ba
40 N0e12e24f56ef4961b9785aa8817ded89 schema:name Albert Boulanger
41 rdf:type schema:Person
42 N108c0e4665864b458a3bcd37a4729a07 rdf:first N579051b044774107bc0b558d76cb9b69
43 rdf:rest Nbc6e88a9cb334c13ad6c8178dc455529
44 N1af428dad8df4550bddc5603e7302c88 schema:name Ansaf Salleb-Aouissi
45 rdf:type schema:Person
46 N33e089adc10746678a5b4ee260229f05 rdf:first N0e12e24f56ef4961b9785aa8817ded89
47 rdf:rest Na88c6cfe9ace4de3ba6b6b588fc078c3
48 N397fb27623544527abf4fd432ca8f67b schema:name Phil Gross
49 rdf:type schema:Person
50 N42e5c08424e44ab993b2c90703b8876e rdf:first N43520e6794fd41b9a066abdd88806665
51 rdf:rest N01ca54fc90934675adf655d188588d52
52 N43520e6794fd41b9a066abdd88806665 schema:name Steve Ierome
53 rdf:type schema:Person
54 N4510786ed2854476815a87122952306f schema:name Axinia Radeva
55 rdf:type schema:Person
56 N579051b044774107bc0b558d76cb9b69 schema:name David Waltz
57 rdf:type schema:Person
58 N57bea5d243b740c9ab620da7a529e4ac rdf:first N7541519c7a594ca5b0368b2fba51a7df
59 rdf:rest Nc69e40b164db46e5bd153a5784a89937
60 N6d4ec51d852f4ee28f782d984dadd61f rdf:first Nf71cec84b6f94814905c2c85238e2a52
61 rdf:rest N42e5c08424e44ab993b2c90703b8876e
62 N7541519c7a594ca5b0368b2fba51a7df schema:name Haimonti Dutta
63 rdf:type schema:Person
64 N836a434aaf6a436cbcd9a4ad5e691916 schema:name Peter Hofmann
65 rdf:type schema:Person
66 N879453b2871c498cb8e9f12ce9841ffa schema:name Cynthia Rudin
67 rdf:type schema:Person
68 N9103efc6e8894784bfce2b09ce54dae2 schema:name Maggie Chow
69 rdf:type schema:Person
70 N914c07781a0a4a9c85e0b025f56d593c schema:name Leon L. Wu
71 rdf:type schema:Person
72 N9ce87afeedc041cd8fad4b2d38ac6f61 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Na3808d6ab658436eb3ca18c8fd9d3f2a schema:name Delfina Isaac
75 rdf:type schema:Person
76 Na88c6cfe9ace4de3ba6b6b588fc078c3 rdf:first N879453b2871c498cb8e9f12ce9841ffa
77 rdf:rest N108c0e4665864b458a3bcd37a4729a07
78 Nb66f328d2dd14dd2b30a08204fd47969 rdf:first N914c07781a0a4a9c85e0b025f56d593c
79 rdf:rest Nf8880b8664e14f22a73bbed50a68c239
80 Nb6c6ae1a5a3f4ffab22501581e8e5eb6 schema:name Arthur Kressner
81 rdf:type schema:Person
82 Nbc6e88a9cb334c13ad6c8178dc455529 rdf:first N1af428dad8df4550bddc5603e7302c88
83 rdf:rest Nbfb4dac297a54b138e3ec8cea4c1980a
84 Nbfb4dac297a54b138e3ec8cea4c1980a rdf:first N9103efc6e8894784bfce2b09ce54dae2
85 rdf:rest N57bea5d243b740c9ab620da7a529e4ac
86 Nc69e40b164db46e5bd153a5784a89937 rdf:first N397fb27623544527abf4fd432ca8f67b
87 rdf:rest N6d4ec51d852f4ee28f782d984dadd61f
88 Nd1b0fac6cfce4a968d9fb62d5f2327ba rdf:first N4510786ed2854476815a87122952306f
89 rdf:rest Nb66f328d2dd14dd2b30a08204fd47969
90 Ndd124480cec2431ca96821475b1d63b0 rdf:first Neb0679dc90a4490db58d51301c03d007
91 rdf:rest N33e089adc10746678a5b4ee260229f05
92 Neb0679dc90a4490db58d51301c03d007 schema:name Roger N. Anderson
93 rdf:type schema:Person
94 Ned1a8477c16c46deb50b79ed7cc8dceb schema:name Rebecca J. Passonneau
95 rdf:type schema:Person
96 Nf71cec84b6f94814905c2c85238e2a52 schema:name Huang Bert
97 rdf:type schema:Person
98 Nf8880b8664e14f22a73bbed50a68c239 rdf:first N836a434aaf6a436cbcd9a4ad5e691916
99 rdf:rest N08ffd4afd05140a7af0c8b4810e98bc9
100 Nfec432b781994ab89c30765a8aa73d36 schema:name Frank Dougherty
101 rdf:type schema:Person
102 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
103 rdf:type schema:DefinedTerm
104 sg:pub.10.1007/s10994-009-5166-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029243296
105 https://doi.org/10.1007/s10994-009-5166-y
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/tpami.2010.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041652907
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.21729.3f schema:Organization
110 https://www.grid.ac/institutes/grid.453554.6 schema:Organization
 




Preview window. Press ESC to close (or click here)


...