Feature Specification Via Semantic Queries


Ontology type: sgo:Patent     


Patent Info

DATE

2012-06-07T00:00

AUTHORS

Stuart Bowers , Tom Jackson , Jim Karkanias , Dave Campbell , Brian Aust

ABSTRACT

Technology is described that includes a method of feature specification via semantic queries. The method can include the operation of obtaining a data set having an identifier for each data row and a plurality of data features for each data row. A semantic query can be received that can be applied to the dataset that is usable by a machine learning tool. A entity feature map can be supplied that has entities and associated features for use by the machine learning tool. Further, a query structure can be analyzed using the entity feature map to identify input from the dataset for the machine learning tool. More... »

Related SciGraph Publications

  • 1989-08. Self-organizing semantic maps in BIOLOGICAL CYBERNETICS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Stuart Bowers", 
            "type": "Person"
          }, 
          {
            "name": "Tom Jackson", 
            "type": "Person"
          }, 
          {
            "name": "Jim Karkanias", 
            "type": "Person"
          }, 
          {
            "name": "Dave Campbell", 
            "type": "Person"
          }, 
          {
            "name": "Brian Aust", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00203171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005902655", 
              "https://doi.org/10.1007/bf00203171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00203171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005902655", 
              "https://doi.org/10.1007/bf00203171"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-06-07T00:00", 
        "description": "

    Technology is described that includes a method of feature specification via semantic queries. The method can include the operation of obtaining a data set having an identifier for each data row and a plurality of data features for each data row. A semantic query can be received that can be applied to the dataset that is usable by a machine learning tool. A entity feature map can be supplied that has entities and associated features for use by the machine learning tool. Further, a query structure can be analyzed using the entity feature map to identify input from the dataset for the machine learning tool.

    ", "id": "sg:patent.US-20120143793-A1", "keywords": [ "specification", "technology", "method", "semantics", "operation", "Dataset", "identifier", "row", "plurality", "feature", "machine", "tool", "entity", "associated feature", "query", "input" ], "name": "FEATURE SPECIFICATION VIA SEMANTIC QUERIES", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.419815.0", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-20120143793-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:09", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00350.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-20120143793-A1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-20120143793-A1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-20120143793-A1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-20120143793-A1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    58 TRIPLES      15 PREDICATES      31 URIs      24 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-20120143793-A1 schema:about anzsrc-for:2746
    2 schema:author N59e92e37e059413784b670bc0de0d73b
    3 schema:citation sg:pub.10.1007/bf00203171
    4 schema:datePublished 2012-06-07T00:00
    5 schema:description <p id="p-0001" num="0000">Technology is described that includes a method of feature specification via semantic queries. The method can include the operation of obtaining a data set having an identifier for each data row and a plurality of data features for each data row. A semantic query can be received that can be applied to the dataset that is usable by a machine learning tool. A entity feature map can be supplied that has entities and associated features for use by the machine learning tool. Further, a query structure can be analyzed using the entity feature map to identify input from the dataset for the machine learning tool.</p>
    6 schema:keywords Dataset
    7 associated feature
    8 entity
    9 feature
    10 identifier
    11 input
    12 machine
    13 method
    14 operation
    15 plurality
    16 query
    17 row
    18 semantics
    19 specification
    20 technology
    21 tool
    22 schema:name FEATURE SPECIFICATION VIA SEMANTIC QUERIES
    23 schema:recipient https://www.grid.ac/institutes/grid.419815.0
    24 schema:sameAs https://app.dimensions.ai/details/patent/US-20120143793-A1
    25 schema:sdDatePublished 2019-04-18T10:09
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N33d710ff4b494a02be26af6fe36f728f
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset patents
    30 rdf:type sgo:Patent
    31 N3363d6bfe883487983edae56148f4152 rdf:first N68045ef91d5a469daea77f64db2808f9
    32 rdf:rest rdf:nil
    33 N33d710ff4b494a02be26af6fe36f728f schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N59e92e37e059413784b670bc0de0d73b rdf:first N798dccbe43b24987bb5cd53e9ec9d839
    36 rdf:rest N7ef75817601944148ffff956e132b69b
    37 N6242c97cbc0b4de580fec32add362811 rdf:first N70ed8173547f49ef9a57fe964fef2427
    38 rdf:rest N3363d6bfe883487983edae56148f4152
    39 N68045ef91d5a469daea77f64db2808f9 schema:name Brian Aust
    40 rdf:type schema:Person
    41 N70ed8173547f49ef9a57fe964fef2427 schema:name Dave Campbell
    42 rdf:type schema:Person
    43 N798dccbe43b24987bb5cd53e9ec9d839 schema:name Stuart Bowers
    44 rdf:type schema:Person
    45 N7ef75817601944148ffff956e132b69b rdf:first Na019b5bce0364e7395e075ef0466b39c
    46 rdf:rest N87f0e69007a046619114c5f17764af88
    47 N81062d5dc1ae458586ee00976eca33ee schema:name Jim Karkanias
    48 rdf:type schema:Person
    49 N87f0e69007a046619114c5f17764af88 rdf:first N81062d5dc1ae458586ee00976eca33ee
    50 rdf:rest N6242c97cbc0b4de580fec32add362811
    51 Na019b5bce0364e7395e075ef0466b39c schema:name Tom Jackson
    52 rdf:type schema:Person
    53 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    54 rdf:type schema:DefinedTerm
    55 sg:pub.10.1007/bf00203171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005902655
    56 https://doi.org/10.1007/bf00203171
    57 rdf:type schema:CreativeWork
    58 https://www.grid.ac/institutes/grid.419815.0 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...