Bactericidal methods and compositions


Ontology type: sgo:Patent     


Patent Info

DATE

2021-09-07T00:00

AUTHORS

DONG PU-TING , HUI JIE , CHENG JI-XIN , ZHU YIFAN

ABSTRACT

Methods of the present invention comprise photoinactivation of catalase in combination with low-concentration peroxide solutions and/or ROS generating agents to provide antibacterial effects.

Related SciGraph Publications

  • 2018-03-28. A new class of synthetic retinoid antibiotics effective against bacterial persisters in NATURE
  • 2016-04-21. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2016-07-11. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus in SCIENTIFIC REPORTS
  • 2008-01. The biology and future prospects of antivirulence therapies in NATURE REVIEWS MICROBIOLOGY
  • 2018-12-19. Applications of Raman spectroscopy in cancer diagnosis in CANCER AND METASTASIS REVIEWS
  • 2006-05-07. Identifying off-target effects and hidden phenotypes of drugs in human cells in NATURE CHEMICAL BIOLOGY
  • 2016-08-11. Biofilms: an emergent form of bacterial life in NATURE REVIEWS MICROBIOLOGY
  • 2017-03-02. The drug-resistant bacteria that pose the greatest health threats in NATURE
  • 2009-08. Efflux-Mediated Drug Resistance in Bacteria in DRUGS
  • 2017-03-24. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance in NATURE REVIEWS DRUG DISCOVERY
  • 2014-03-30. Amphotericin forms an extramembranous and fungicidal sterol sponge in NATURE CHEMICAL BIOLOGY
  • 2007-08-20. Targeting virulence: a new paradigm for antimicrobial therapy in NATURE CHEMICAL BIOLOGY
  • 2011-05-11. Metabolite-enabled eradication of bacterial persisters by aminoglycosides in NATURE
  • 2016-01-18. Small-molecule targeting of a diapophytoene desaturase inhibits S. aureus virulence in NATURE CHEMICAL BIOLOGY
  • 2005-11-18. Fluorescence microscopy in NATURE METHODS
  • 1928-03. A New Type of Secondary Radiation in NATURE
  • 1972-02. Raman Scattering Cross Sections in NATURE
  • 2016-10-19. First hospital outbreak of the globally emerging Candida auris in a European hospital in ANTIMICROBIAL RESISTANCE & INFECTION CONTROL
  • 2009-10. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy in NATURE
  • 2014-05-25. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering in NATURE CHEMISTRY
  • 2012-06-30. Diabetic Complications: Current Challenges and Opportunities in JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH
  • 2014-07-20. High-speed coherent Raman fingerprint imaging of biological tissues in NATURE PHOTONICS
  • 2004-02-12. Photodynamic therapy: a new antimicrobial approach to infectious disease? in PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES
  • 2016-07-27. Antibiotics right under our nose in NATURE
  • 2013-04-28. Far-field imaging of non-fluorescent species with subdiffraction resolution in NATURE PHOTONICS
  • 2015-11-04. Novel antibody‚Äďantibiotic conjugate eliminates intracellular S. aureus in NATURE
  • 2018-08-06. Optical imaging of metabolic dynamics in animals in NATURE COMMUNICATIONS
  • 2006-08-09. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) in NATURE METHODS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "name": "DONG PU-TING", 
            "type": "Person"
          }, 
          {
            "name": "HUI JIE", 
            "type": "Person"
          }, 
          {
            "name": "CHENG JI-XIN", 
            "type": "Person"
          }, 
          {
            "name": "ZHU YIFAN", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.2165/11317030-000000000-00000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000003006", 
              "https://doi.org/10.2165/11317030-000000000-00000"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08438", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027275292", 
              "https://doi.org/10.1038/nature08438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro.2016.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021095240", 
              "https://doi.org/10.1038/nrmicro.2016.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016228948", 
              "https://doi.org/10.1038/nature16057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature.2017.21550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084128461", 
              "https://doi.org/10.1038/nature.2017.21550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.1496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049690615", 
              "https://doi.org/10.1038/nchembio.1496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature26157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101795551", 
              "https://doi.org/10.1038/nature26157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-018-05401-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105832074", 
              "https://doi.org/10.1038/s41467-018-05401-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/121501c0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053436835", 
              "https://doi.org/10.1038/121501c0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep29707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011555882", 
              "https://doi.org/10.1038/srep29707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033715717", 
              "https://doi.org/10.1038/nchembio790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.2007.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051082561", 
              "https://doi.org/10.1038/nchembio.2007.24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13756-016-0132-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025981855", 
              "https://doi.org/10.1186/s13756-016-0132-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021849910", 
              "https://doi.org/10.1038/nature10069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047300775", 
              "https://doi.org/10.1038/nrmicro1818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd.2017.23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084129616", 
              "https://doi.org/10.1038/nrd.2017.23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10555-018-9770-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110760624", 
              "https://doi.org/10.1007/s10555-018-9770-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.2003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042540294", 
              "https://doi.org/10.1038/nchembio.2003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12265-012-9388-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006050132", 
              "https://doi.org/10.1007/s12265-012-9388-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/physci235110b0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037248227", 
              "https://doi.org/10.1038/physci235110b0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchem.1961", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032194266", 
              "https://doi.org/10.1038/nchem.1961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/535501a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033147737", 
              "https://doi.org/10.1038/535501a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2013.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047152900", 
              "https://doi.org/10.1038/nphoton.2013.97"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2014.145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041371047", 
              "https://doi.org/10.1038/nphoton.2014.145"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018882864", 
              "https://doi.org/10.1038/nmeth929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052882147", 
              "https://doi.org/10.1038/nmeth817"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1039/b311900a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035001576", 
              "https://doi.org/10.1039/b311900a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-016-9540-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014988183", 
              "https://doi.org/10.1007/s00216-016-9540-x"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2021-09-07T00:00", 
        "description": "

    Methods of the present invention comprise photoinactivation of catalase in combination with low-concentration peroxide solutions and/or ROS generating agents to provide antibacterial effects.

    ", "endDate": "2040-01-31", "id": "sg:patent.US-11110296-B2", "name": "Bactericidal methods and compositions", "recipient": [ { "id": "http://www.grid.ac/institutes/grid.32224.35", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-11110296-B2" ], "sdDataset": "patents", "sdDatePublished": "2022-10-01T07:03", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/patent/patent_42.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-11110296-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-11110296-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-11110296-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-11110296-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      14 PREDICATES      42 URIs      9 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-11110296-B2 schema:author Nc821679e7c2c4dc7b38dd4788d9cfa2a
    2 schema:citation sg:pub.10.1007/s00216-016-9540-x
    3 sg:pub.10.1007/s10555-018-9770-9
    4 sg:pub.10.1007/s12265-012-9388-1
    5 sg:pub.10.1038/121501c0
    6 sg:pub.10.1038/535501a
    7 sg:pub.10.1038/nature.2017.21550
    8 sg:pub.10.1038/nature08438
    9 sg:pub.10.1038/nature10069
    10 sg:pub.10.1038/nature16057
    11 sg:pub.10.1038/nature26157
    12 sg:pub.10.1038/nchem.1961
    13 sg:pub.10.1038/nchembio.1496
    14 sg:pub.10.1038/nchembio.2003
    15 sg:pub.10.1038/nchembio.2007.24
    16 sg:pub.10.1038/nchembio790
    17 sg:pub.10.1038/nmeth817
    18 sg:pub.10.1038/nmeth929
    19 sg:pub.10.1038/nphoton.2013.97
    20 sg:pub.10.1038/nphoton.2014.145
    21 sg:pub.10.1038/nrd.2017.23
    22 sg:pub.10.1038/nrmicro.2016.94
    23 sg:pub.10.1038/nrmicro1818
    24 sg:pub.10.1038/physci235110b0
    25 sg:pub.10.1038/s41467-018-05401-3
    26 sg:pub.10.1038/srep29707
    27 sg:pub.10.1039/b311900a
    28 sg:pub.10.1186/s13756-016-0132-5
    29 sg:pub.10.2165/11317030-000000000-00000
    30 schema:datePublished 2021-09-07T00:00
    31 schema:description <p id="p-0001" num="0000">Methods of the present invention comprise photoinactivation of catalase in combination with low-concentration peroxide solutions and/or ROS generating agents to provide antibacterial effects.</p>
    32 schema:endDate 2040-01-31
    33 schema:name Bactericidal methods and compositions
    34 schema:recipient grid-institutes:grid.32224.35
    35 schema:sameAs https://app.dimensions.ai/details/patent/US-11110296-B2
    36 schema:sdDatePublished 2022-10-01T07:03
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher N164de339cda34ca5bcde22d33cfa46a3
    39 sgo:license sg:explorer/license/
    40 sgo:sdDataset patents
    41 rdf:type sgo:Patent
    42 N164de339cda34ca5bcde22d33cfa46a3 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N4a96930e96fd4f78b2d133aa06e7dd95 schema:name CHENG JI-XIN
    45 rdf:type schema:Person
    46 N5362dfda905348e2bfa1f918e9e3c8d4 schema:name DONG PU-TING
    47 rdf:type schema:Person
    48 N8df4e3eb36014a248dc1572e05fa198a schema:name HUI JIE
    49 rdf:type schema:Person
    50 Nc821679e7c2c4dc7b38dd4788d9cfa2a rdf:first N5362dfda905348e2bfa1f918e9e3c8d4
    51 rdf:rest Neba31ff87e794f55a8d3fede16d9c17e
    52 Nd132e9f0b03949e0bbcfcdb491fe2eae rdf:first Ne17043eb98bf4f74bdd27caca2cef8fb
    53 rdf:rest rdf:nil
    54 Ne17043eb98bf4f74bdd27caca2cef8fb schema:name ZHU YIFAN
    55 rdf:type schema:Person
    56 Ne3a8ca6bd37d44be9b08e358071bc3df rdf:first N4a96930e96fd4f78b2d133aa06e7dd95
    57 rdf:rest Nd132e9f0b03949e0bbcfcdb491fe2eae
    58 Neba31ff87e794f55a8d3fede16d9c17e rdf:first N8df4e3eb36014a248dc1572e05fa198a
    59 rdf:rest Ne3a8ca6bd37d44be9b08e358071bc3df
    60 sg:pub.10.1007/s00216-016-9540-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014988183
    61 https://doi.org/10.1007/s00216-016-9540-x
    62 rdf:type schema:CreativeWork
    63 sg:pub.10.1007/s10555-018-9770-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110760624
    64 https://doi.org/10.1007/s10555-018-9770-9
    65 rdf:type schema:CreativeWork
    66 sg:pub.10.1007/s12265-012-9388-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006050132
    67 https://doi.org/10.1007/s12265-012-9388-1
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1038/121501c0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053436835
    70 https://doi.org/10.1038/121501c0
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1038/535501a schema:sameAs https://app.dimensions.ai/details/publication/pub.1033147737
    73 https://doi.org/10.1038/535501a
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1038/nature.2017.21550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084128461
    76 https://doi.org/10.1038/nature.2017.21550
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1038/nature08438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275292
    79 https://doi.org/10.1038/nature08438
    80 rdf:type schema:CreativeWork
    81 sg:pub.10.1038/nature10069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021849910
    82 https://doi.org/10.1038/nature10069
    83 rdf:type schema:CreativeWork
    84 sg:pub.10.1038/nature16057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016228948
    85 https://doi.org/10.1038/nature16057
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1038/nature26157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101795551
    88 https://doi.org/10.1038/nature26157
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1038/nchem.1961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032194266
    91 https://doi.org/10.1038/nchem.1961
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1038/nchembio.1496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049690615
    94 https://doi.org/10.1038/nchembio.1496
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1038/nchembio.2003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042540294
    97 https://doi.org/10.1038/nchembio.2003
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1038/nchembio.2007.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051082561
    100 https://doi.org/10.1038/nchembio.2007.24
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1038/nchembio790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033715717
    103 https://doi.org/10.1038/nchembio790
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1038/nmeth817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052882147
    106 https://doi.org/10.1038/nmeth817
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1038/nmeth929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018882864
    109 https://doi.org/10.1038/nmeth929
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1038/nphoton.2013.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047152900
    112 https://doi.org/10.1038/nphoton.2013.97
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1038/nphoton.2014.145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041371047
    115 https://doi.org/10.1038/nphoton.2014.145
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/nrd.2017.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129616
    118 https://doi.org/10.1038/nrd.2017.23
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1038/nrmicro.2016.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021095240
    121 https://doi.org/10.1038/nrmicro.2016.94
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/nrmicro1818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047300775
    124 https://doi.org/10.1038/nrmicro1818
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1038/physci235110b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037248227
    127 https://doi.org/10.1038/physci235110b0
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1038/s41467-018-05401-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105832074
    130 https://doi.org/10.1038/s41467-018-05401-3
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1038/srep29707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011555882
    133 https://doi.org/10.1038/srep29707
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1039/b311900a schema:sameAs https://app.dimensions.ai/details/publication/pub.1035001576
    136 https://doi.org/10.1039/b311900a
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1186/s13756-016-0132-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025981855
    139 https://doi.org/10.1186/s13756-016-0132-5
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.2165/11317030-000000000-00000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000003006
    142 https://doi.org/10.2165/11317030-000000000-00000
    143 rdf:type schema:CreativeWork
    144 grid-institutes:grid.32224.35 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...