Data monitoring system


Ontology type: sgo:Patent     


Patent Info

DATE

2021-06-15T00:00

AUTHORS

LIAO YUWEI , MCGUIRK ANYA MARY , BIGGS BYRON DAVIS , CHAUDHURI ARIN , LANGLOIS ALLEN JOSEPH , DETERS VINCENT L

ABSTRACT

A computing system determines if an event has occurred. A first window is defined that includes a subset of a plurality of observation vectors modeled as an output of an autoregressive causal system. A magnitude adjustment vector is computed from a mean computed for a matrix of magnitude values that includes a column for each window of a plurality of windows. The first window is stored in a next column of the matrix of magnitude values. Each cell of the matrix of magnitude values includes an estimated power spectrum value for a respective window and a respective frequency. A second matrix of magnitude values is updated using the magnitude adjustment vector. Each cell of the second matrix of magnitude values includes an adjusted power spectrum value for the respective window and the respective frequency. A peak is detected from the next column of the second matrix of magnitude values. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "LIAO YUWEI", 
        "type": "Person"
      }, 
      {
        "name": "MCGUIRK ANYA MARY", 
        "type": "Person"
      }, 
      {
        "name": "BIGGS BYRON DAVIS", 
        "type": "Person"
      }, 
      {
        "name": "CHAUDHURI ARIN", 
        "type": "Person"
      }, 
      {
        "name": "LANGLOIS ALLEN JOSEPH", 
        "type": "Person"
      }, 
      {
        "name": "DETERS VINCENT L", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00603817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007221798", 
          "https://doi.org/10.1007/bf00603817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19960102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039045080", 
          "https://doi.org/10.1051/apido:19960102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/apido:19930309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053217929", 
          "https://doi.org/10.1051/apido:19930309"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-06-15T00:00", 
    "description": "

A computing system determines if an event has occurred. A first window is defined that includes a subset of a plurality of observation vectors modeled as an output of an autoregressive causal system. A magnitude adjustment vector is computed from a mean computed for a matrix of magnitude values that includes a column for each window of a plurality of windows. The first window is stored in a next column of the matrix of magnitude values. Each cell of the matrix of magnitude values includes an estimated power spectrum value for a respective window and a respective frequency. A second matrix of magnitude values is updated using the magnitude adjustment vector. Each cell of the second matrix of magnitude values includes an adjusted power spectrum value for the respective window and the respective frequency. A peak is detected from the next column of the second matrix of magnitude values.

", "endDate": "2041-02-04", "id": "sg:patent.US-11036981-B1", "name": "Data monitoring system", "recipient": [ { "id": "http://www.grid.ac/institutes/grid.438656.a", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-11036981-B1" ], "sdDataset": "patents", "sdDatePublished": "2022-09-02T16:21", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/patent/patent_13.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-11036981-B1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-11036981-B1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-11036981-B1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-11036981-B1'


 

This table displays all metadata directly associated to this object as RDF triples.

58 TRIPLES      15 PREDICATES      19 URIs      9 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-11036981-B1 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Na8b6d6371ef4463bba0c76a28a24d400
4 schema:citation sg:pub.10.1007/bf00603817
5 sg:pub.10.1051/apido:19930309
6 sg:pub.10.1051/apido:19960102
7 schema:datePublished 2021-06-15T00:00
8 schema:description <p>A computing system determines if an event has occurred. A first window is defined that includes a subset of a plurality of observation vectors modeled as an output of an autoregressive causal system. A magnitude adjustment vector is computed from a mean computed for a matrix of magnitude values that includes a column for each window of a plurality of windows. The first window is stored in a next column of the matrix of magnitude values. Each cell of the matrix of magnitude values includes an estimated power spectrum value for a respective window and a respective frequency. A second matrix of magnitude values is updated using the magnitude adjustment vector. Each cell of the second matrix of magnitude values includes an adjusted power spectrum value for the respective window and the respective frequency. A peak is detected from the next column of the second matrix of magnitude values.</p>
9 schema:endDate 2041-02-04
10 schema:name Data monitoring system
11 schema:recipient grid-institutes:grid.438656.a
12 schema:sameAs https://app.dimensions.ai/details/patent/US-11036981-B1
13 schema:sdDatePublished 2022-09-02T16:21
14 schema:sdLicense https://scigraph.springernature.com/explorer/license/
15 schema:sdPublisher N945b4a12bf464deca69643cdc15d1328
16 sgo:license sg:explorer/license/
17 sgo:sdDataset patents
18 rdf:type sgo:Patent
19 N13b67d27bc504dea9e22a50899a0aa1c rdf:first N183c849f9008454b8b59890cbccd9de5
20 rdf:rest N80700cf4992b4e6b9aa38400e37e3216
21 N183c849f9008454b8b59890cbccd9de5 schema:name CHAUDHURI ARIN
22 rdf:type schema:Person
23 N350a3d47ec39406ebe52a069700b162c rdf:first Nc9db6f8ba6fd4a91b986d30a2caf59e5
24 rdf:rest N13b67d27bc504dea9e22a50899a0aa1c
25 N67d73445a13d4094b010e6b10cc92841 schema:name LANGLOIS ALLEN JOSEPH
26 rdf:type schema:Person
27 N77033da2f6e24720bd1c31cb224e27d8 rdf:first N7a0e8b54966f46f398fe9453582eda01
28 rdf:rest N350a3d47ec39406ebe52a069700b162c
29 N7a0e8b54966f46f398fe9453582eda01 schema:name MCGUIRK ANYA MARY
30 rdf:type schema:Person
31 N80700cf4992b4e6b9aa38400e37e3216 rdf:first N67d73445a13d4094b010e6b10cc92841
32 rdf:rest Nfb6fac2c2aa54803bb7173fd67fd3d04
33 N90aabacddaaa43d3917f21fbdd0d2e7d schema:name DETERS VINCENT L
34 rdf:type schema:Person
35 N945b4a12bf464deca69643cdc15d1328 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 Na8b6d6371ef4463bba0c76a28a24d400 rdf:first Nae7fb5eca4884082a8fd7f30afebe4d6
38 rdf:rest N77033da2f6e24720bd1c31cb224e27d8
39 Nae7fb5eca4884082a8fd7f30afebe4d6 schema:name LIAO YUWEI
40 rdf:type schema:Person
41 Nc9db6f8ba6fd4a91b986d30a2caf59e5 schema:name BIGGS BYRON DAVIS
42 rdf:type schema:Person
43 Nfb6fac2c2aa54803bb7173fd67fd3d04 rdf:first N90aabacddaaa43d3917f21fbdd0d2e7d
44 rdf:rest rdf:nil
45 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
46 rdf:type schema:DefinedTerm
47 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
48 rdf:type schema:DefinedTerm
49 sg:pub.10.1007/bf00603817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007221798
50 https://doi.org/10.1007/bf00603817
51 rdf:type schema:CreativeWork
52 sg:pub.10.1051/apido:19930309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053217929
53 https://doi.org/10.1051/apido:19930309
54 rdf:type schema:CreativeWork
55 sg:pub.10.1051/apido:19960102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039045080
56 https://doi.org/10.1051/apido:19960102
57 rdf:type schema:CreativeWork
58 grid-institutes:grid.438656.a schema:Organization
 




Preview window. Press ESC to close (or click here)


...