Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification


Ontology type: sgo:Patent     


Patent Info

DATE

2018-08-28T00:00

AUTHORS

Cheng Chen , T. Bruce Ferguson, Jr. , Zhiyong Peng , Kenneth Michael Jacobs

ABSTRACT

Some embodiments of the present inventive concept provide a system that uses two wavelengths of differential transmittance through a sample to apply laser speckle or laser Doppler imaging. A first of the two wavelengths is within the visible range that has zero or very shallow penetration. This wavelength captures the anatomical structure of tissue/organ surface and serves as a position marker of the sample but not the subsurface movement of blood flow and perfusion. A second wavelength is in the near Infra-Red (NIR) range, which has much deeper penetration. This wavelength reveals the underlying blood flow physiology and correlates both to the motion of the sample and also the movement of blood flow and perfusion. Thus, true motion of blood flow and perfusion can be derived from the NIR imaging measurement without being affected by the motion artifact of the target. More... »

Related SciGraph Publications

  • 2006-12. Laser speckle imaging of dynamic changes in flow during photodynamic therapy in LASERS IN MEDICAL SCIENCE
  • 2012-06. Speckle-free laser imaging using random laser illumination in NATURE PHOTONICS
  • 1976-12. Velocity measurement of a diffuse object by using time-varying speckles in OPTICAL AND QUANTUM ELECTRONICS
  • 2004-12. Blood flow measurements in studies of macro- and microcirculation in BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE
  • 2001-03. Dynamic Imaging of Cerebral Blood Flow Using Laser Speckle in JOURNAL OF CEREBRAL BLOOD FLOW & METABOLISM
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2837", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Cheng Chen", 
            "type": "Person"
          }, 
          {
            "name": "T. Bruce Ferguson, Jr.", 
            "type": "Person"
          }, 
          {
            "name": "Zhiyong Peng", 
            "type": "Person"
          }, 
          {
            "name": "Kenneth Michael Jacobs", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1111/j.1460-9568.2004.03735.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000727993"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1001/archopht.121.2.235", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000907001"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.3582334", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002672738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00620143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006932040", 
              "https://doi.org/10.1007/bf00620143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00620143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006932040", 
              "https://doi.org/10.1007/bf00620143"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2012.90", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007237192", 
              "https://doi.org/10.1038/nphoton.2012.90"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10103-006-0399-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007898658", 
              "https://doi.org/10.1007/s10103-006-0399-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10103-006-0399-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007898658", 
              "https://doi.org/10.1007/s10103-006-0399-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10517-005-0121-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018492722", 
              "https://doi.org/10.1007/s10517-005-0121-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0738-081x(95)00080-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020060432"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lsm.21018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021552981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0030-4018(95)00042-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023129783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.2341196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024091034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0030-4018(81)90428-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033162436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0030-4018(81)90428-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033162436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1161/circulationaha.104.520098", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037032971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/lsm.1900130205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037584596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/00004647-200103000-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041470068", 
              "https://doi.org/10.1097/00004647-200103000-00002"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00004647-200103000-00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041470068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0002-9149(97)89143-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042267601"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0031-9155/49/7/020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059025488"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/2944.577331", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061145347"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.33.001070", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065108632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ao.36.000144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065111599"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/josaa.25.002088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065162118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.11.003116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065182657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.11.003490", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065182731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.003211", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065189753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.013904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065191052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/oe.17.013904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065191052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.22.001119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065217496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.25.001358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065219381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.25.001448", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065219409"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.27.001702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065220595"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.31.001824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065223963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1364/ol.31.003465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1065224433"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08-28T00:00", 
        "description": "

    Some embodiments of the present inventive concept provide a system that uses two wavelengths of differential transmittance through a sample to apply laser speckle or laser Doppler imaging. A first of the two wavelengths is within the visible range that has zero or very shallow penetration. This wavelength captures the anatomical structure of tissue/organ surface and serves as a position marker of the sample but not the subsurface movement of blood flow and perfusion. A second wavelength is in the near Infra-Red (NIR) range, which has much deeper penetration. This wavelength reveals the underlying blood flow physiology and correlates both to the motion of the sample and also the movement of blood flow and perfusion. Thus, true motion of blood flow and perfusion can be derived from the NIR imaging measurement without being affected by the motion artifact of the target.

    ", "id": "sg:patent.US-10058256-B2", "keywords": [ "imaging", "method", "blood flow", "perfusion imaging", "quantification", "embodiment", "concept", "wavelength", "transmittance", "sample", "speckle", "Doppler imaging", "visible range", "penetration", "anatomical structure", "surface", "marker", "subsurface", "perfusion", "NIR", "deep penetration", "motion", "movement", "NIR imaging", "motion artifact", "target" ], "name": "Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.255364.3", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-10058256-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:23", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01817.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-10058256-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-10058256-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-10058256-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-10058256-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    161 TRIPLES      15 PREDICATES      72 URIs      34 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-10058256-B2 schema:about anzsrc-for:2837
    2 schema:author Ncbda9fde90024c0aa12401e79d8c3e37
    3 schema:citation sg:pub.10.1007/bf00620143
    4 sg:pub.10.1007/s10103-006-0399-5
    5 sg:pub.10.1007/s10517-005-0121-9
    6 sg:pub.10.1038/nphoton.2012.90
    7 sg:pub.10.1097/00004647-200103000-00002
    8 https://doi.org/10.1001/archopht.121.2.235
    9 https://doi.org/10.1002/lsm.1900130205
    10 https://doi.org/10.1002/lsm.21018
    11 https://doi.org/10.1016/0030-4018(81)90428-4
    12 https://doi.org/10.1016/0030-4018(95)00042-7
    13 https://doi.org/10.1016/0738-081x(95)00080-y
    14 https://doi.org/10.1016/s0002-9149(97)89143-6
    15 https://doi.org/10.1088/0031-9155/49/7/020
    16 https://doi.org/10.1097/00004647-200103000-00002
    17 https://doi.org/10.1109/2944.577331
    18 https://doi.org/10.1111/j.1460-9568.2004.03735.x
    19 https://doi.org/10.1117/1.2341196
    20 https://doi.org/10.1117/1.3582334
    21 https://doi.org/10.1161/circulationaha.104.520098
    22 https://doi.org/10.1364/ao.33.001070
    23 https://doi.org/10.1364/ao.36.000144
    24 https://doi.org/10.1364/josaa.25.002088
    25 https://doi.org/10.1364/oe.11.003116
    26 https://doi.org/10.1364/oe.11.003490
    27 https://doi.org/10.1364/oe.17.003211
    28 https://doi.org/10.1364/oe.17.013904
    29 https://doi.org/10.1364/ol.22.001119
    30 https://doi.org/10.1364/ol.25.001358
    31 https://doi.org/10.1364/ol.25.001448
    32 https://doi.org/10.1364/ol.27.001702
    33 https://doi.org/10.1364/ol.31.001824
    34 https://doi.org/10.1364/ol.31.003465
    35 schema:datePublished 2018-08-28T00:00
    36 schema:description <p>Some embodiments of the present inventive concept provide a system that uses two wavelengths of differential transmittance through a sample to apply laser speckle or laser Doppler imaging. A first of the two wavelengths is within the visible range that has zero or very shallow penetration. This wavelength captures the anatomical structure of tissue/organ surface and serves as a position marker of the sample but not the subsurface movement of blood flow and perfusion. A second wavelength is in the near Infra-Red (NIR) range, which has much deeper penetration. This wavelength reveals the underlying blood flow physiology and correlates both to the motion of the sample and also the movement of blood flow and perfusion. Thus, true motion of blood flow and perfusion can be derived from the NIR imaging measurement without being affected by the motion artifact of the target.</p>
    37 schema:keywords Doppler imaging
    38 NIR
    39 NIR imaging
    40 anatomical structure
    41 blood flow
    42 concept
    43 deep penetration
    44 embodiment
    45 imaging
    46 marker
    47 method
    48 motion
    49 motion artifact
    50 movement
    51 penetration
    52 perfusion
    53 perfusion imaging
    54 quantification
    55 sample
    56 speckle
    57 subsurface
    58 surface
    59 target
    60 transmittance
    61 visible range
    62 wavelength
    63 schema:name Multi-spectral laser imaging (MSLI) methods and systems for blood flow and perfusion imaging and quantification
    64 schema:recipient https://www.grid.ac/institutes/grid.255364.3
    65 schema:sameAs https://app.dimensions.ai/details/patent/US-10058256-B2
    66 schema:sdDatePublished 2019-04-18T10:23
    67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    68 schema:sdPublisher Na78690bf9d0f44a8827c6d8f22b8b83b
    69 sgo:license sg:explorer/license/
    70 sgo:sdDataset patents
    71 rdf:type sgo:Patent
    72 N1feec9c82dd74889ba6677e9bb5d6506 schema:name T. Bruce Ferguson, Jr.
    73 rdf:type schema:Person
    74 N24c3bcb40d484db68960395a1b5601ff rdf:first N1feec9c82dd74889ba6677e9bb5d6506
    75 rdf:rest Nf54f7773f8304359a1f12e0826b8f6ab
    76 N2cb66436f35a42d786910c282368a08f rdf:first Naca0e3fb747c4cc58f99aa1611532f5a
    77 rdf:rest rdf:nil
    78 Na78690bf9d0f44a8827c6d8f22b8b83b schema:name Springer Nature - SN SciGraph project
    79 rdf:type schema:Organization
    80 Naca0e3fb747c4cc58f99aa1611532f5a schema:name Kenneth Michael Jacobs
    81 rdf:type schema:Person
    82 Ncbda9fde90024c0aa12401e79d8c3e37 rdf:first Nf3a39b6b74a748ebab90655496fb9586
    83 rdf:rest N24c3bcb40d484db68960395a1b5601ff
    84 Ncbfb10df44af4d97a33ebf29c468ce2f schema:name Zhiyong Peng
    85 rdf:type schema:Person
    86 Nf3a39b6b74a748ebab90655496fb9586 schema:name Cheng Chen
    87 rdf:type schema:Person
    88 Nf54f7773f8304359a1f12e0826b8f6ab rdf:first Ncbfb10df44af4d97a33ebf29c468ce2f
    89 rdf:rest N2cb66436f35a42d786910c282368a08f
    90 anzsrc-for:2837 schema:inDefinedTermSet anzsrc-for:
    91 rdf:type schema:DefinedTerm
    92 sg:pub.10.1007/bf00620143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006932040
    93 https://doi.org/10.1007/bf00620143
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s10103-006-0399-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007898658
    96 https://doi.org/10.1007/s10103-006-0399-5
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s10517-005-0121-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018492722
    99 https://doi.org/10.1007/s10517-005-0121-9
    100 rdf:type schema:CreativeWork
    101 sg:pub.10.1038/nphoton.2012.90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007237192
    102 https://doi.org/10.1038/nphoton.2012.90
    103 rdf:type schema:CreativeWork
    104 sg:pub.10.1097/00004647-200103000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041470068
    105 https://doi.org/10.1097/00004647-200103000-00002
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1001/archopht.121.2.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000907001
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1002/lsm.1900130205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037584596
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1002/lsm.21018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021552981
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/0030-4018(81)90428-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033162436
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/0030-4018(95)00042-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023129783
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/0738-081x(95)00080-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020060432
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0002-9149(97)89143-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042267601
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1088/0031-9155/49/7/020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059025488
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1097/00004647-200103000-00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041470068
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/2944.577331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061145347
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1111/j.1460-9568.2004.03735.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000727993
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1117/1.2341196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024091034
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1117/1.3582334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002672738
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1161/circulationaha.104.520098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037032971
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1364/ao.33.001070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065108632
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1364/ao.36.000144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065111599
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1364/josaa.25.002088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065162118
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1364/oe.11.003116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182657
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1364/oe.11.003490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182731
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1364/oe.17.003211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065189753
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1364/oe.17.013904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065191052
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1364/ol.22.001119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217496
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1364/ol.25.001358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219381
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1364/ol.25.001448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219409
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1364/ol.27.001702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065220595
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1364/ol.31.001824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065223963
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1364/ol.31.003465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224433
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.255364.3 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...