Systems and methods for using paired-end data in directed acyclic structure


Ontology type: sgo:Patent     


Patent Info

DATE

2018-08-21T00:00

AUTHORS

Deniz Kural , Nathan Meyvis

ABSTRACT

Methods of analyzing a transcriptome that involves obtaining at least one pair of paired-end reads from a transcriptome from an organism, finding an alignment with an optimal score between a first read of the pair and a node in a directed acyclic data structure (the data structure has nodes representing RNA sequences such as exons or transcripts and edges connecting pairs of nodes), identifying candidate paths that include the node connected to a downstream node by a path having a length substantially similar to an insert length of the pair of paired-end reads, and aligning the paired-end rends to the candidate paths to determine an optimal-scoring alignment. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2358", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Deniz Kural", 
        "type": "Person"
      }, 
      {
        "name": "Nathan Meyvis", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bib/6.1.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000972847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002897135", 
          "https://doi.org/10.1038/nmeth.2474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004015204", 
          "https://doi.org/10.1038/nrg3054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.077065.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006399713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006753974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gki520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007287636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007683223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009798986", 
          "https://doi.org/10.1038/nmeth.1613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011138564", 
          "https://doi.org/10.1038/70570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/70570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011138564", 
          "https://doi.org/10.1038/70570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.135350.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012073457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012266713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013776641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014155557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015803168", 
          "https://doi.org/10.1038/nbt.1883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016441007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018404011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/bbq015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019203929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(70)90057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021169618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023229632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023229632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bib/5.3.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023658419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2010.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023969907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2010.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023969907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(81)90087-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024589839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(82)90398-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025042064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.15252/emmm.201404913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025069174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025260149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.8.699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025315480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025339324", 
          "https://doi.org/10.1038/nbt.1633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/319501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027413555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/319501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027413555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/313064a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028301226", 
          "https://doi.org/10.1038/313064a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2889405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029639613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029663613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030687647", 
          "https://doi.org/10.1038/nrg2484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.2008.058701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030868887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031035095", 
          "https://doi.org/10.1038/nbt.1621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031694006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btn032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032165726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032254527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/94.18.1365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032615477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.7.1647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032965452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033174360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2013.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035589899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsb.2013.02.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035589899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.8.2444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035928070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3030405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037614264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-9-r98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038374959", 
          "https://doi.org/10.1186/gb-2009-10-9-r98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.112326.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039404689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2005.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040311455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.11.2369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041672956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcss.2009.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041711242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1103388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042123507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bth397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043301791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047672670", 
          "https://doi.org/10.1038/nature06884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050504482", 
          "https://doi.org/10.1038/nbt.2023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2010/853916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050880402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/359842.359859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051315984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2012.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052346583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2012.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052346583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ygeno.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052838811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s0092-8240(86)90010-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054614786", 
          "https://doi.org/10.1016/s0092-8240(86)90010-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/587000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058800235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2009.0094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059245828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.2012.0084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059246115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.330039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcbb.2013.140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061541132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0222018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/rna.19683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072309954"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-21T00:00", 
    "description": "

Methods of analyzing a transcriptome that involves obtaining at least one pair of paired-end reads from a transcriptome from an organism, finding an alignment with an optimal score between a first read of the pair and a node in a directed acyclic data structure (the data structure has nodes representing RNA sequences such as exons or transcripts and edges connecting pairs of nodes), identifying candidate paths that include the node connected to a downstream node by a path having a length substantially similar to an insert length of the pair of paired-end reads, and aligning the paired-end rends to the candidate paths to determine an optimal-scoring alignment.

", "id": "sg:patent.US-10055539-B2", "keywords": [ "method", "paired-end", "analyzing", "Transcriptome", "pair", "organism", "alignment", "score", "node", "data structure", "Base Sequence", "exon", "transcript", "edge", "path", "insert" ], "name": "Systems and methods for using paired-end data in directed acyclic structure", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.492568.4", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-10055539-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:23", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01813.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-10055539-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-10055539-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-10055539-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-10055539-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      15 PREDICATES      95 URIs      24 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-10055539-B2 schema:about anzsrc-for:2358
2 schema:author N0f2624f1198a4ee2b73360f824bc9ece
3 schema:citation sg:pub.10.1016/s0092-8240(86)90010-8
4 sg:pub.10.1038/313064a0
5 sg:pub.10.1038/70570
6 sg:pub.10.1038/nature03959
7 sg:pub.10.1038/nature06884
8 sg:pub.10.1038/nbt.1621
9 sg:pub.10.1038/nbt.1633
10 sg:pub.10.1038/nbt.1883
11 sg:pub.10.1038/nbt.2023
12 sg:pub.10.1038/nmeth.1613
13 sg:pub.10.1038/nmeth.2474
14 sg:pub.10.1038/nrg2484
15 sg:pub.10.1038/nrg3054
16 sg:pub.10.1186/gb-2009-10-9-r98
17 https://doi.org/10.1016/0022-2836(70)90057-4
18 https://doi.org/10.1016/0022-2836(81)90087-5
19 https://doi.org/10.1016/0022-2836(82)90398-9
20 https://doi.org/10.1016/j.jcss.2009.11.009
21 https://doi.org/10.1016/j.jsb.2013.02.017
22 https://doi.org/10.1016/j.sbi.2005.04.002
23 https://doi.org/10.1016/j.ygeno.2010.02.001
24 https://doi.org/10.1016/j.ygeno.2010.03.001
25 https://doi.org/10.1016/j.ygeno.2012.08.004
26 https://doi.org/10.1073/pnas.85.8.2444
27 https://doi.org/10.1086/319501
28 https://doi.org/10.1086/587000
29 https://doi.org/10.1089/cmb.2009.0094
30 https://doi.org/10.1089/cmb.2012.0084
31 https://doi.org/10.1093/bib/5.3.237
32 https://doi.org/10.1093/bib/6.1.23
33 https://doi.org/10.1093/bib/bbq015
34 https://doi.org/10.1093/bioinformatics/16.8.699
35 https://doi.org/10.1093/bioinformatics/bth397
36 https://doi.org/10.1093/bioinformatics/bti795
37 https://doi.org/10.1093/bioinformatics/btl582
38 https://doi.org/10.1093/bioinformatics/btm404
39 https://doi.org/10.1093/bioinformatics/btn025
40 https://doi.org/10.1093/bioinformatics/btn032
41 https://doi.org/10.1093/bioinformatics/btn095
42 https://doi.org/10.1093/bioinformatics/btn397
43 https://doi.org/10.1093/bioinformatics/btp336
44 https://doi.org/10.1093/bioinformatics/btq057
45 https://doi.org/10.1093/bioinformatics/btq475
46 https://doi.org/10.1093/bioinformatics/btr330
47 https://doi.org/10.1093/bioinformatics/btt396
48 https://doi.org/10.1093/jnci/94.18.1365
49 https://doi.org/10.1093/nar/27.11.2369
50 https://doi.org/10.1093/nar/29.7.1647
51 https://doi.org/10.1093/nar/gkh731
52 https://doi.org/10.1093/nar/gki520
53 https://doi.org/10.1093/nar/gkl396
54 https://doi.org/10.1101/gr.077065.108
55 https://doi.org/10.1101/gr.112326.110
56 https://doi.org/10.1101/gr.135350.111
57 https://doi.org/10.1101/gr.2889405
58 https://doi.org/10.1101/gr.3030405
59 https://doi.org/10.1109/2.330039
60 https://doi.org/10.1109/tcbb.2013.140
61 https://doi.org/10.1126/science.1103388
62 https://doi.org/10.1136/jmg.2008.058701
63 https://doi.org/10.1137/0222018
64 https://doi.org/10.1145/359842.359859
65 https://doi.org/10.1155/2010/853916
66 https://doi.org/10.15252/emmm.201404913
67 https://doi.org/10.4161/rna.19683
68 schema:datePublished 2018-08-21T00:00
69 schema:description <p>Methods of analyzing a transcriptome that involves obtaining at least one pair of paired-end reads from a transcriptome from an organism, finding an alignment with an optimal score between a first read of the pair and a node in a directed acyclic data structure (the data structure has nodes representing RNA sequences such as exons or transcripts and edges connecting pairs of nodes), identifying candidate paths that include the node connected to a downstream node by a path having a length substantially similar to an insert length of the pair of paired-end reads, and aligning the paired-end rends to the candidate paths to determine an optimal-scoring alignment.</p>
70 schema:keywords Base Sequence
71 Transcriptome
72 alignment
73 analyzing
74 data structure
75 edge
76 exon
77 insert
78 method
79 node
80 organism
81 pair
82 paired-end
83 path
84 score
85 transcript
86 schema:name Systems and methods for using paired-end data in directed acyclic structure
87 schema:recipient https://www.grid.ac/institutes/grid.492568.4
88 schema:sameAs https://app.dimensions.ai/details/patent/US-10055539-B2
89 schema:sdDatePublished 2019-04-18T10:23
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N7653d5ce7fce4b009b1cf306fbb611c9
92 sgo:license sg:explorer/license/
93 sgo:sdDataset patents
94 rdf:type sgo:Patent
95 N0150eca77f0648b78866c056b23147e4 rdf:first N5e82a2344439414d82accee0c180d10f
96 rdf:rest rdf:nil
97 N0f2624f1198a4ee2b73360f824bc9ece rdf:first N55651b7d88904defa06fa2451eba929f
98 rdf:rest N0150eca77f0648b78866c056b23147e4
99 N55651b7d88904defa06fa2451eba929f schema:name Deniz Kural
100 rdf:type schema:Person
101 N5e82a2344439414d82accee0c180d10f schema:name Nathan Meyvis
102 rdf:type schema:Person
103 N7653d5ce7fce4b009b1cf306fbb611c9 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 anzsrc-for:2358 schema:inDefinedTermSet anzsrc-for:
106 rdf:type schema:DefinedTerm
107 sg:pub.10.1016/s0092-8240(86)90010-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054614786
108 https://doi.org/10.1016/s0092-8240(86)90010-8
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/313064a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028301226
111 https://doi.org/10.1038/313064a0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/70570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011138564
114 https://doi.org/10.1038/70570
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
117 https://doi.org/10.1038/nature03959
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/nature06884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047672670
120 https://doi.org/10.1038/nature06884
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/nbt.1621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031035095
123 https://doi.org/10.1038/nbt.1621
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/nbt.1633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025339324
126 https://doi.org/10.1038/nbt.1633
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nbt.1883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015803168
129 https://doi.org/10.1038/nbt.1883
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/nbt.2023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050504482
132 https://doi.org/10.1038/nbt.2023
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nmeth.1613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009798986
135 https://doi.org/10.1038/nmeth.1613
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nmeth.2474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002897135
138 https://doi.org/10.1038/nmeth.2474
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nrg2484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030687647
141 https://doi.org/10.1038/nrg2484
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nrg3054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004015204
144 https://doi.org/10.1038/nrg3054
145 rdf:type schema:CreativeWork
146 sg:pub.10.1186/gb-2009-10-9-r98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038374959
147 https://doi.org/10.1186/gb-2009-10-9-r98
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0022-2836(70)90057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021169618
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/0022-2836(81)90087-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024589839
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/0022-2836(82)90398-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025042064
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jcss.2009.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041711242
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jsb.2013.02.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035589899
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.sbi.2005.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040311455
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.ygeno.2010.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023969907
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ygeno.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052838811
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.ygeno.2012.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052346583
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.85.8.2444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035928070
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1086/319501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027413555
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1086/587000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058800235
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1089/cmb.2009.0094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059245828
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1089/cmb.2012.0084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059246115
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/bib/5.3.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023658419
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bib/6.1.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000972847
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bib/bbq015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019203929
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/16.8.699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025315480
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/bioinformatics/bth397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043301791
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1093/bioinformatics/bti795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023229632
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/bioinformatics/btl582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014155557
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1093/bioinformatics/btm404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007683223
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1093/bioinformatics/btn025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012266713
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1093/bioinformatics/btn032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032165726
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1093/bioinformatics/btn095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029663613
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1093/bioinformatics/btn397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006753974
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1093/bioinformatics/btp336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016441007
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1093/bioinformatics/btq057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025260149
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/btq475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033174360
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/btr330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018404011
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/btt396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013776641
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/jnci/94.18.1365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032615477
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/nar/27.11.2369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041672956
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/29.7.1647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032965452
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gkh731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031694006
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gki520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007287636
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/gkl396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032254527
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1101/gr.077065.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006399713
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1101/gr.112326.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039404689
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1101/gr.135350.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012073457
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1101/gr.2889405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029639613
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1101/gr.3030405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037614264
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1109/2.330039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105365
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1109/tcbb.2013.140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061541132
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1126/science.1103388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123507
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1136/jmg.2008.058701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030868887
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1137/0222018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842421
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1145/359842.359859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051315984
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1155/2010/853916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050880402
246 rdf:type schema:CreativeWork
247 https://doi.org/10.15252/emmm.201404913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025069174
248 rdf:type schema:CreativeWork
249 https://doi.org/10.4161/rna.19683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072309954
250 rdf:type schema:CreativeWork
251 https://www.grid.ac/institutes/grid.492568.4 schema:Organization
 




Preview window. Press ESC to close (or click here)


...