Method for identifying compounds of therapeutic interest


Ontology type: sgo:Patent     


Patent Info

DATE

2018-08-14T00:00

AUTHORS

ALASTAIR DAVID GRIFFITHS LAWSON , Alistair James Henry

ABSTRACT

The present invention relates to an improved method for drug discovery. In particular the present invention provides a method of identifying compounds capable of binding to a functional conformational state of a protein of interest or protein fragment thereof, said method comprising the steps of: (a) Binding a function-modifying antibody to the target protein of interest or a fragment thereof to provide an antibody-constrained protein or fragment, wherein the antibody has binding kinetics with the protein or fragment which are such that it has a low dissociation rate constant, (b) Providing a test compound which has a low molecular weight, (c) Evaluating whether the test compound of step b) binds the antibody constrained protein or fragment, and (d) Select a compound from step c) based on the ability to bind to the protein or fragment thereof. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2581", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "ALASTAIR DAVID GRIFFITHS LAWSON", 
        "type": "Person"
      }, 
      {
        "name": "Alistair James Henry", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0907444910007493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000235100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444910007493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000235100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0180935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002210386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0180935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002210386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-7613(00)00037-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002951401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri2273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006625763", 
          "https://doi.org/10.1038/nri2273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-409x(00)00129-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006677292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-065x.2009.00833.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007192678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-065x.2009.00833.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007192678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008225564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0161-5890(86)90005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008839076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0161-5890(86)90005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008839076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2222.2005.02191.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009247333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1747-0285.2007.00471.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009830802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444904010145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011012411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2012.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015643358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020326812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020326812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020326812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m111.331967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024240895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444994003112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025573949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889808006985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032551326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444911001314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032555428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35018500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040384935", 
          "https://doi.org/10.1038/35018500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35018500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040384935", 
          "https://doi.org/10.1038/35018500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040452458", 
          "https://doi.org/10.1038/nrd1343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040452458", 
          "https://doi.org/10.1038/nrd1343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2007.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042204379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcms.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044158128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046652146", 
          "https://doi.org/10.1038/ni811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046652146", 
          "https://doi.org/10.1038/ni811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0903805106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047360880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb.2044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047835195", 
          "https://doi.org/10.1038/nsmb.2044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00044a023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055158564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00102a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055160948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1381612043384303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069165213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-4-1739-2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072657212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-4-1739-2004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072657212"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08-14T00:00", 
    "description": "

The present invention relates to an improved method for drug discovery. In particular the present invention provides a method of identifying compounds capable of binding to a functional conformational state of a protein of interest or protein fragment thereof, said method comprising the steps of: (a) Binding a function-modifying antibody to the target protein of interest or a fragment thereof to provide an antibody-constrained protein or fragment, wherein the antibody has binding kinetics with the protein or fragment which are such that it has a low dissociation rate constant, (b) Providing a test compound which has a low molecular weight, (c) Evaluating whether the test compound of step b) binds the antibody constrained protein or fragment, and (d) Select a compound from step c) based on the ability to bind to the protein or fragment thereof.

", "id": "sg:patent.US-10048253-B2", "keywords": [ "method", "compound", "therapeutic interest", "invention", "improved method", "drug discovery", "binding", "conformational state", "protein", "protein fragment", "antibody", "target protein", "fragment", "wherein", "binding kinetics", "dissociation rate constant", "low molecular weight" ], "name": "Method for identifying compounds of therapeutic interest", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.421932.f", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-10048253-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:23", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01809.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-10048253-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-10048253-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-10048253-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-10048253-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      15 PREDICATES      60 URIs      25 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-10048253-B2 schema:about anzsrc-for:2581
2 schema:author N7b146a248a1942fa9952e63b3ab5ec4c
3 schema:citation sg:pub.10.1038/35018500
4 sg:pub.10.1038/ni811
5 sg:pub.10.1038/nrd1343
6 sg:pub.10.1038/nri2273
7 sg:pub.10.1038/nsmb.2044
8 https://doi.org/10.1002/jcc.20084
9 https://doi.org/10.1002/wcms.31
10 https://doi.org/10.1016/0161-5890(86)90005-2
11 https://doi.org/10.1016/j.ab.2012.09.010
12 https://doi.org/10.1016/j.jmb.2007.05.022
13 https://doi.org/10.1016/j.ymeth.2011.07.005
14 https://doi.org/10.1016/s0169-409x(00)00129-0
15 https://doi.org/10.1016/s1074-7613(00)00037-6
16 https://doi.org/10.1021/bi00044a023
17 https://doi.org/10.1021/bi00102a002
18 https://doi.org/10.1042/bst0180935
19 https://doi.org/10.1073/pnas.0903805106
20 https://doi.org/10.1074/jbc.m111.331967
21 https://doi.org/10.1107/s0021889808006985
22 https://doi.org/10.1107/s0907444904010145
23 https://doi.org/10.1107/s0907444909042073
24 https://doi.org/10.1107/s0907444910007493
25 https://doi.org/10.1107/s0907444911001314
26 https://doi.org/10.1107/s0907444994003112
27 https://doi.org/10.1111/j.1365-2222.2005.02191.x
28 https://doi.org/10.1111/j.1600-065x.2009.00833.x
29 https://doi.org/10.1111/j.1747-0285.2007.00471.x
30 https://doi.org/10.2174/1381612043384303
31 https://doi.org/10.5194/acp-4-1739-2004
32 schema:datePublished 2018-08-14T00:00
33 schema:description <p id="p-0001" num="0000">The present invention relates to an improved method for drug discovery. In particular the present invention provides a method of identifying compounds capable of binding to a functional conformational state of a protein of interest or protein fragment thereof, said method comprising the steps of: (a) Binding a function-modifying antibody to the target protein of interest or a fragment thereof to provide an antibody-constrained protein or fragment, wherein the antibody has binding kinetics with the protein or fragment which are such that it has a low dissociation rate constant, (b) Providing a test compound which has a low molecular weight, (c) Evaluating whether the test compound of step b) binds the antibody constrained protein or fragment, and (d) Select a compound from step c) based on the ability to bind to the protein or fragment thereof.</p>
34 schema:keywords antibody
35 binding
36 binding kinetics
37 compound
38 conformational state
39 dissociation rate constant
40 drug discovery
41 fragment
42 improved method
43 invention
44 low molecular weight
45 method
46 protein
47 protein fragment
48 target protein
49 therapeutic interest
50 wherein
51 schema:name Method for identifying compounds of therapeutic interest
52 schema:recipient https://www.grid.ac/institutes/grid.421932.f
53 schema:sameAs https://app.dimensions.ai/details/patent/US-10048253-B2
54 schema:sdDatePublished 2019-04-18T10:23
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N252d7aeb5a68471c8ea49523448e71a7
57 sgo:license sg:explorer/license/
58 sgo:sdDataset patents
59 rdf:type sgo:Patent
60 N252d7aeb5a68471c8ea49523448e71a7 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N7b146a248a1942fa9952e63b3ab5ec4c rdf:first N87876928766f400cbd9f5b589cb6dba2
63 rdf:rest N7e3bf21b607d472b8605f14780e686be
64 N7e3bf21b607d472b8605f14780e686be rdf:first Ne1fb7a4f64ae4e3692aea8210388e400
65 rdf:rest rdf:nil
66 N87876928766f400cbd9f5b589cb6dba2 schema:name ALASTAIR DAVID GRIFFITHS LAWSON
67 rdf:type schema:Person
68 Ne1fb7a4f64ae4e3692aea8210388e400 schema:name Alistair James Henry
69 rdf:type schema:Person
70 anzsrc-for:2581 schema:inDefinedTermSet anzsrc-for:
71 rdf:type schema:DefinedTerm
72 sg:pub.10.1038/35018500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040384935
73 https://doi.org/10.1038/35018500
74 rdf:type schema:CreativeWork
75 sg:pub.10.1038/ni811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046652146
76 https://doi.org/10.1038/ni811
77 rdf:type schema:CreativeWork
78 sg:pub.10.1038/nrd1343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040452458
79 https://doi.org/10.1038/nrd1343
80 rdf:type schema:CreativeWork
81 sg:pub.10.1038/nri2273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006625763
82 https://doi.org/10.1038/nri2273
83 rdf:type schema:CreativeWork
84 sg:pub.10.1038/nsmb.2044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047835195
85 https://doi.org/10.1038/nsmb.2044
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/jcc.20084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008225564
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/wcms.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044158128
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0161-5890(86)90005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008839076
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/j.ab.2012.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015643358
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.jmb.2007.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042204379
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.ymeth.2011.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020326812
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/s0169-409x(00)00129-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006677292
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s1074-7613(00)00037-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002951401
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1021/bi00044a023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055158564
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1021/bi00102a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055160948
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1042/bst0180935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002210386
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1073/pnas.0903805106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047360880
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1074/jbc.m111.331967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024240895
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1107/s0021889808006985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032551326
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1107/s0907444904010145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011012411
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1107/s0907444909042073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018458004
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1107/s0907444910007493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000235100
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1107/s0907444911001314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032555428
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1107/s0907444994003112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025573949
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1365-2222.2005.02191.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009247333
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1600-065x.2009.00833.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007192678
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1111/j.1747-0285.2007.00471.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009830802
130 rdf:type schema:CreativeWork
131 https://doi.org/10.2174/1381612043384303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069165213
132 rdf:type schema:CreativeWork
133 https://doi.org/10.5194/acp-4-1739-2004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072657212
134 rdf:type schema:CreativeWork
135 https://www.grid.ac/institutes/grid.421932.f schema:Organization
 




Preview window. Press ESC to close (or click here)


...