Biomolecular sensors and methods


Ontology type: sgo:Patent     


Patent Info

DATE

2018-07-31T00:00

AUTHORS

Barry L. Merriman , Paul W. Mola

ABSTRACT

Electronic sensors configured to detect single molecule targets and methods of using and manufacturing such electronic sensors are disclosed. A sensor may include a first electrode and a second electrode separated by a sensor gap. The first and second electrodes can be coupled by a sensor complex that can include a biopolymer bridge molecule and a probe. The probe can interact with a target molecule, and interaction of the probe and target molecule can produce a signal suitable to provide detection of the target molecule. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2867", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Barry L. Merriman", 
        "type": "Person"
      }, 
      {
        "name": "Paul W. Mola", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-4484/16/4/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005488919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn406102h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010516877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/18855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012235147", 
          "https://doi.org/10.1038/18855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/18855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012235147", 
          "https://doi.org/10.1038/18855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015788141", 
          "https://doi.org/10.1038/nature04613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015788141", 
          "https://doi.org/10.1038/nature04613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015788141", 
          "https://doi.org/10.1038/nature04613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2010.07.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021917792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bios.2010.07.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021917792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5012/bkcs.2005.26.3.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cg900981q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032604608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cg900981q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032604608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036275565", 
          "https://doi.org/10.1038/nmat856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036275565", 
          "https://doi.org/10.1038/nmat856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200601191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038208071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0728(89)80257-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039015159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.flowmeasinst.2010.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042918565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1601782113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043257585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(10)70201-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044335651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/tf9444000546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046413207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048097443", 
          "https://doi.org/10.1038/nnano.2015.307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1226355", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048551966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mee.2009.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053167460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja800554t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055857820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja800554t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055857820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja901704t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055860962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja901704t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055860962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0000174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056042123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0000174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056042123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la503094k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056160189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl202065x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl202065x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1533103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057717267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jssc.2006.884867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061329599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793292010001962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063020981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3365/eml.2010.06.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106793325", 
          "https://doi.org/10.3365/eml.2010.06.059"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-31T00:00", 
    "description": "

Electronic sensors configured to detect single molecule targets and methods of using and manufacturing such electronic sensors are disclosed. A sensor may include a first electrode and a second electrode separated by a sensor gap. The first and second electrodes can be coupled by a sensor complex that can include a biopolymer bridge molecule and a probe. The probe can interact with a target molecule, and interaction of the probe and target molecule can produce a signal suitable to provide detection of the target molecule.

", "id": "sg:patent.US-10036064-B2", "keywords": [ "biomolecular", "method", "electronic sensor", "single molecule", "manufacturing", "sensor", "electrode", "complex", "biopolymers", "probe", "target molecule", "signal" ], "name": "Biomolecular sensors and methods", "sameAs": [ "https://app.dimensions.ai/details/patent/US-10036064-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:23", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01799.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-10036064-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-10036064-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-10036064-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-10036064-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      14 PREDICATES      52 URIs      20 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-10036064-B2 schema:about anzsrc-for:2867
2 schema:author N27e10ff1cd7d409b95108175e2cb4f3b
3 schema:citation sg:pub.10.1038/18855
4 sg:pub.10.1038/nature04613
5 sg:pub.10.1038/nmat856
6 sg:pub.10.1038/nnano.2012.193
7 sg:pub.10.1038/nnano.2015.307
8 sg:pub.10.3365/eml.2010.06.059
9 https://doi.org/10.1002/adma.200601191
10 https://doi.org/10.1016/0022-0728(89)80257-8
11 https://doi.org/10.1016/j.bios.2010.07.055
12 https://doi.org/10.1016/j.flowmeasinst.2010.03.006
13 https://doi.org/10.1016/j.mee.2009.01.001
14 https://doi.org/10.1016/s1369-7021(10)70201-7
15 https://doi.org/10.1021/cg900981q
16 https://doi.org/10.1021/ja800554t
17 https://doi.org/10.1021/ja901704t
18 https://doi.org/10.1021/jp0000174
19 https://doi.org/10.1021/la503094k
20 https://doi.org/10.1021/nl202065x
21 https://doi.org/10.1021/nn406102h
22 https://doi.org/10.1039/tf9444000546
23 https://doi.org/10.1063/1.1533103
24 https://doi.org/10.1073/pnas.1601782113
25 https://doi.org/10.1088/0957-4484/16/4/005
26 https://doi.org/10.1109/jssc.2006.884867
27 https://doi.org/10.1126/science.1226355
28 https://doi.org/10.1142/s1793292010001962
29 https://doi.org/10.5012/bkcs.2005.26.3.379
30 schema:datePublished 2018-07-31T00:00
31 schema:description <p id="p-0001" num="0000">Electronic sensors configured to detect single molecule targets and methods of using and manufacturing such electronic sensors are disclosed. A sensor may include a first electrode and a second electrode separated by a sensor gap. The first and second electrodes can be coupled by a sensor complex that can include a biopolymer bridge molecule and a probe. The probe can interact with a target molecule, and interaction of the probe and target molecule can produce a signal suitable to provide detection of the target molecule.</p>
32 schema:keywords biomolecular
33 biopolymers
34 complex
35 electrode
36 electronic sensor
37 manufacturing
38 method
39 probe
40 sensor
41 signal
42 single molecule
43 target molecule
44 schema:name Biomolecular sensors and methods
45 schema:sameAs https://app.dimensions.ai/details/patent/US-10036064-B2
46 schema:sdDatePublished 2019-04-18T10:23
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Na3ca47e2667e45cf8425e22006987162
49 sgo:license sg:explorer/license/
50 sgo:sdDataset patents
51 rdf:type sgo:Patent
52 N27e10ff1cd7d409b95108175e2cb4f3b rdf:first N5a3b43659bd745a196731fe4129374d0
53 rdf:rest Nea6beabb99a04d0f924bde0f12359deb
54 N5a3b43659bd745a196731fe4129374d0 schema:name Barry L. Merriman
55 rdf:type schema:Person
56 N76cf671dbfd045799a66f2c63021d759 schema:name Paul W. Mola
57 rdf:type schema:Person
58 Na3ca47e2667e45cf8425e22006987162 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nea6beabb99a04d0f924bde0f12359deb rdf:first N76cf671dbfd045799a66f2c63021d759
61 rdf:rest rdf:nil
62 anzsrc-for:2867 schema:inDefinedTermSet anzsrc-for:
63 rdf:type schema:DefinedTerm
64 sg:pub.10.1038/18855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012235147
65 https://doi.org/10.1038/18855
66 rdf:type schema:CreativeWork
67 sg:pub.10.1038/nature04613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015788141
68 https://doi.org/10.1038/nature04613
69 rdf:type schema:CreativeWork
70 sg:pub.10.1038/nmat856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036275565
71 https://doi.org/10.1038/nmat856
72 rdf:type schema:CreativeWork
73 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
74 https://doi.org/10.1038/nnano.2012.193
75 rdf:type schema:CreativeWork
76 sg:pub.10.1038/nnano.2015.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048097443
77 https://doi.org/10.1038/nnano.2015.307
78 rdf:type schema:CreativeWork
79 sg:pub.10.3365/eml.2010.06.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106793325
80 https://doi.org/10.3365/eml.2010.06.059
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/adma.200601191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038208071
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/0022-0728(89)80257-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039015159
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.bios.2010.07.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021917792
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.flowmeasinst.2010.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042918565
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.mee.2009.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053167460
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/s1369-7021(10)70201-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044335651
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1021/cg900981q schema:sameAs https://app.dimensions.ai/details/publication/pub.1032604608
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1021/ja800554t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055857820
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1021/ja901704t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055860962
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1021/jp0000174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056042123
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1021/la503094k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056160189
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1021/nl202065x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218747
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1021/nn406102h schema:sameAs https://app.dimensions.ai/details/publication/pub.1010516877
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1039/tf9444000546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046413207
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1063/1.1533103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057717267
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1073/pnas.1601782113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043257585
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1088/0957-4484/16/4/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005488919
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/jssc.2006.884867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061329599
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1126/science.1226355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048551966
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1142/s1793292010001962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063020981
121 rdf:type schema:CreativeWork
122 https://doi.org/10.5012/bkcs.2005.26.3.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031398238
123 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...