Machine learning apparatus and coil producing apparatus


Ontology type: sgo:Patent     


Patent Info

DATE

2018-07-10T00:00

AUTHORS

Yasunori Sugimoto

ABSTRACT

A machine learning apparatus includes a state observing unit for observing a state variable comprised of at least one of an actual dimension value, a resistance actual value, etc., and at least one of a dimension command value, a resistance command value, etc., and an execution time command value for a program, and a learning unit for performing a learning operation by linking at least one of an actual dimension value, a resistance actual value, etc., to at least one of a dimension command value, a resistance command value, etc., observed by the state observing unit, and an execution time command value for the program. More... »

Related SciGraph Publications

  • 2011-07. Reinforcement learning in feedback control in MACHINE LEARNING
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Yasunori Sugimoto", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10994-011-5235-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036156720", 
              "https://doi.org/10.1007/s10994-011-5235-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tie.2003.822096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061622127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3156/jfuzzy.8.1_115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091886375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icarcv.2008.4795608", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093395038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/infoseee.2014.6946200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095727135"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-10T00:00", 
        "description": "

    A machine learning apparatus includes a state observing unit for observing a state variable comprised of at least one of an actual dimension value, a resistance actual value, etc., and at least one of a dimension command value, a resistance command value, etc., and an execution time command value for a program, and a learning unit for performing a learning operation by linking at least one of an actual dimension value, a resistance actual value, etc., to at least one of a dimension command value, a resistance command value, etc., observed by the state observing unit, and an execution time command value for the program.

    ", "id": "sg:patent.US-10019674-B2", "keywords": [ "machine", "apparatus", "coil", "observing", "state", "dimension", "actual value", "resistance", "execution time", "unit", "operation" ], "name": "Machine learning apparatus and coil producing apparatus", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.471089.3", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-10019674-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:23", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01786.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-10019674-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-10019674-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-10019674-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-10019674-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    49 TRIPLES      15 PREDICATES      30 URIs      19 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-10019674-B2 schema:about anzsrc-for:2746
    2 schema:author Nd299101694044e68a7f88333e01d7fe6
    3 schema:citation sg:pub.10.1007/s10994-011-5235-x
    4 https://doi.org/10.1109/icarcv.2008.4795608
    5 https://doi.org/10.1109/infoseee.2014.6946200
    6 https://doi.org/10.1109/tie.2003.822096
    7 https://doi.org/10.3156/jfuzzy.8.1_115
    8 schema:datePublished 2018-07-10T00:00
    9 schema:description <p id="p-0001" num="0000">A machine learning apparatus includes a state observing unit for observing a state variable comprised of at least one of an actual dimension value, a resistance actual value, etc., and at least one of a dimension command value, a resistance command value, etc., and an execution time command value for a program, and a learning unit for performing a learning operation by linking at least one of an actual dimension value, a resistance actual value, etc., to at least one of a dimension command value, a resistance command value, etc., observed by the state observing unit, and an execution time command value for the program.</p>
    10 schema:keywords actual value
    11 apparatus
    12 coil
    13 dimension
    14 execution time
    15 machine
    16 observing
    17 operation
    18 resistance
    19 state
    20 unit
    21 schema:name Machine learning apparatus and coil producing apparatus
    22 schema:recipient https://www.grid.ac/institutes/grid.471089.3
    23 schema:sameAs https://app.dimensions.ai/details/patent/US-10019674-B2
    24 schema:sdDatePublished 2019-04-18T10:23
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N578a0cb7ace3449d9711ecbd7be605d7
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset patents
    29 rdf:type sgo:Patent
    30 N578a0cb7ace3449d9711ecbd7be605d7 schema:name Springer Nature - SN SciGraph project
    31 rdf:type schema:Organization
    32 N8ca55c5125834de992cebebaf9bf6827 schema:name Yasunori Sugimoto
    33 rdf:type schema:Person
    34 Nd299101694044e68a7f88333e01d7fe6 rdf:first N8ca55c5125834de992cebebaf9bf6827
    35 rdf:rest rdf:nil
    36 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    37 rdf:type schema:DefinedTerm
    38 sg:pub.10.1007/s10994-011-5235-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036156720
    39 https://doi.org/10.1007/s10994-011-5235-x
    40 rdf:type schema:CreativeWork
    41 https://doi.org/10.1109/icarcv.2008.4795608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093395038
    42 rdf:type schema:CreativeWork
    43 https://doi.org/10.1109/infoseee.2014.6946200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095727135
    44 rdf:type schema:CreativeWork
    45 https://doi.org/10.1109/tie.2003.822096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061622127
    46 rdf:type schema:CreativeWork
    47 https://doi.org/10.3156/jfuzzy.8.1_115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091886375
    48 rdf:type schema:CreativeWork
    49 https://www.grid.ac/institutes/grid.471089.3 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...