Image Recognition Method And Apparatus, Image Verification Method And Apparatus, Learning Method And Apparatus To Recognize Image, And Learning Method ...


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

HAN, Hanseungju , SUH, Suhsungjoo , HAN, Hanjaejoon , CHOI, Choichang Kyu

ABSTRACT

A method of recognizing a feature of an image may include receiving an input image including an object; extracting first feature information using a first layer of a neural network, the first feature information indicating a first feature corresponding to the input image among a plurality of first features; extracting second feature information using a second layer of the neural network, the second feature information indicating a second feature among a plurality of second features, the indicated second feature corresponding to the first feature information; and recognizing an element corresponding to the object based on the first feature information and the second feature information. More... »

Related SciGraph Publications

  • 2014. Visualizing and Understanding Convolutional Networks in COMPUTER VISION – ECCV 2014
  • 2015. Image Classification Using Convolutional Neural Networks With Multi-stage Feature in ROBOT INTELLIGENCE TECHNOLOGY AND APPLICATIONS 3
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "HAN, Hanseungju", 
            "type": "Person"
          }, 
          {
            "name": "SUH, Suhsungjoo", 
            "type": "Person"
          }, 
          {
            "name": "HAN, Hanjaejoon", 
            "type": "Person"
          }, 
          {
            "name": "CHOI, Choichang Kyu", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-16841-8_52", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004363370", 
              "https://doi.org/10.1007/978-3-319-16841-8_52"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2733373.2806242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019762238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-10590-1_53", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032233097", 
              "https://doi.org/10.1007/978-3-319-10590-1_53"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2013.188", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093486469"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2013.465", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095420134"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    A method of recognizing a feature of an image may include receiving an input image including an object; extracting first feature information using a first layer of a neural network, the first feature information indicating a first feature corresponding to the input image among a plurality of first features; extracting second feature information using a second layer of the neural network, the second feature information indicating a second feature among a plurality of second features, the indicated second feature corresponding to the first feature information; and recognizing an element corresponding to the object based on the first feature information and the second feature information.\n

    ", "id": "sg:patent.EP-3035246-A3", "keywords": [ "image recognition", "verification method", "Learning", "method", "feature", "input image", "extracting", "first layer", "Nerve Net", "plurality", "second layer", "element" ], "name": "IMAGE RECOGNITION METHOD AND APPARATUS, IMAGE VERIFICATION METHOD AND APPARATUS, LEARNING METHOD AND APPARATUS TO RECOGNIZE IMAGE, AND LEARNING METHOD AND APPARATUS TO VERIFY IMAGE", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.419666.a", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/EP-3035246-A3" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:33", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_820f844a.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.EP-3035246-A3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.EP-3035246-A3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.EP-3035246-A3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.EP-3035246-A3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    62 TRIPLES      14 PREDICATES      30 URIs      19 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.EP-3035246-A3 schema:about anzsrc-for:2746
    2 schema:author Nb84bb7d45bbe43019b2cf9ba90ffc4b5
    3 schema:citation sg:pub.10.1007/978-3-319-10590-1_53
    4 sg:pub.10.1007/978-3-319-16841-8_52
    5 https://doi.org/10.1109/cvpr.2013.465
    6 https://doi.org/10.1109/iccv.2013.188
    7 https://doi.org/10.1145/2733373.2806242
    8 schema:description <p id="pa01" num="0001">A method of recognizing a feature of an image may include receiving an input image including an object; extracting first feature information using a first layer of a neural network, the first feature information indicating a first feature corresponding to the input image among a plurality of first features; extracting second feature information using a second layer of the neural network, the second feature information indicating a second feature among a plurality of second features, the indicated second feature corresponding to the first feature information; and recognizing an element corresponding to the object based on the first feature information and the second feature information. <img id="iaf01" file="imgaf001.tif" wi="78" he="76" img-content="drawing" img-format="tif"/></p>
    9 schema:keywords Learning
    10 Nerve Net
    11 element
    12 extracting
    13 feature
    14 first layer
    15 image recognition
    16 input image
    17 method
    18 plurality
    19 second layer
    20 verification method
    21 schema:name IMAGE RECOGNITION METHOD AND APPARATUS, IMAGE VERIFICATION METHOD AND APPARATUS, LEARNING METHOD AND APPARATUS TO RECOGNIZE IMAGE, AND LEARNING METHOD AND APPARATUS TO VERIFY IMAGE
    22 schema:recipient https://www.grid.ac/institutes/grid.419666.a
    23 schema:sameAs https://app.dimensions.ai/details/patent/EP-3035246-A3
    24 schema:sdDatePublished 2019-03-07T15:33
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N5a903024ff844e4488202101bb45c0b0
    27 sgo:license sg:explorer/license/
    28 sgo:sdDataset patents
    29 rdf:type sgo:Patent
    30 N0a5f685ec3f1420990c6a65eb2086edb rdf:first N515fcecff2fe4986b427e25f81f999f4
    31 rdf:rest N4ac1fe076bfb45f5bc812cf3f931a4b1
    32 N4ac1fe076bfb45f5bc812cf3f931a4b1 rdf:first Nf2947a570736473ea8107ac0e734ca63
    33 rdf:rest rdf:nil
    34 N515fcecff2fe4986b427e25f81f999f4 schema:name HAN, Hanjaejoon
    35 rdf:type schema:Person
    36 N5a903024ff844e4488202101bb45c0b0 schema:name Springer Nature - SN SciGraph project
    37 rdf:type schema:Organization
    38 N6d5c248497944e70a1d045da877dcc4d rdf:first N96b72eef58354602a42e87bcab5d2aa6
    39 rdf:rest N0a5f685ec3f1420990c6a65eb2086edb
    40 N96b72eef58354602a42e87bcab5d2aa6 schema:name SUH, Suhsungjoo
    41 rdf:type schema:Person
    42 Nb84bb7d45bbe43019b2cf9ba90ffc4b5 rdf:first Nd208eb3d794a46f688bab3e871b08525
    43 rdf:rest N6d5c248497944e70a1d045da877dcc4d
    44 Nd208eb3d794a46f688bab3e871b08525 schema:name HAN, Hanseungju
    45 rdf:type schema:Person
    46 Nf2947a570736473ea8107ac0e734ca63 schema:name CHOI, Choichang Kyu
    47 rdf:type schema:Person
    48 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    49 rdf:type schema:DefinedTerm
    50 sg:pub.10.1007/978-3-319-10590-1_53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032233097
    51 https://doi.org/10.1007/978-3-319-10590-1_53
    52 rdf:type schema:CreativeWork
    53 sg:pub.10.1007/978-3-319-16841-8_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004363370
    54 https://doi.org/10.1007/978-3-319-16841-8_52
    55 rdf:type schema:CreativeWork
    56 https://doi.org/10.1109/cvpr.2013.465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095420134
    57 rdf:type schema:CreativeWork
    58 https://doi.org/10.1109/iccv.2013.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093486469
    59 rdf:type schema:CreativeWork
    60 https://doi.org/10.1145/2733373.2806242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019762238
    61 rdf:type schema:CreativeWork
    62 https://www.grid.ac/institutes/grid.419666.a schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...