Collection Of Machine Learning Training Data For Expression Recognition


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

MOVELLAN JAVIER , BARTLETT MARIAN STEWARD , FASEL IAN , LITTLEWORT GWEN FORD , SUSSKIND JOSHUA , WHITEHILL JACOB

ABSTRACT

Apparatus, methods, and articles of manufacture for implementing crowdsourcing pipelines that generate training examples for machine learning expression classifiers. Crowdsourcing providers actively generate images with expressions, according to cues or goals. The cues or goals may be to mimic an expression or appear in a certain way, or to "break" an existing expression recognizer. The images are collected and rated by same or different crowdsourcing providers, and the images that meet a first quality criterion are then vetted by expert(s). The vetted images are then used as positive or negative examples in training machine learning expression classifiers. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3468", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "MOVELLAN JAVIER", 
        "type": "Person"
      }, 
      {
        "name": "BARTLETT MARIAN STEWARD", 
        "type": "Person"
      }, 
      {
        "name": "FASEL IAN", 
        "type": "Person"
      }, 
      {
        "name": "LITTLEWORT GWEN FORD", 
        "type": "Person"
      }, 
      {
        "name": "SUSSKIND JOSHUA", 
        "type": "Person"
      }, 
      {
        "name": "WHITEHILL JACOB", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3758/brm.42.1.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025687629", 
          "https://doi.org/10.3758/brm.42.1.351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/afgr.2000.840611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094698009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icme.2005.1521424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094872563"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Apparatus, methods, and articles of manufacture for implementing crowdsourcing pipelines that generate training examples for machine learning expression classifiers. Crowdsourcing providers actively generate images with expressions, according to cues or goals. The cues or goals may be to mimic an expression or appear in a certain way, or to \"break\" an existing expression recognizer. The images are collected and rated by same or different crowdsourcing providers, and the images that meet a first quality criterion are then vetted by expert(s). The vetted images are then used as positive or negative examples in training machine learning expression classifiers.

", "id": "sg:patent.EP-2954459-A4", "keywords": [ "training data", "apparatus", "method", "article", "crowdsourcing", "training example", "machine", "expression", "cue", "certain way", "quality criterion", "expert" ], "name": "COLLECTION OF MACHINE LEARNING TRAINING DATA FOR EXPRESSION RECOGNITION", "sameAs": [ "https://app.dimensions.ai/details/patent/EP-2954459-A4" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:37", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_ec415531.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.EP-2954459-A4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.EP-2954459-A4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.EP-2954459-A4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.EP-2954459-A4'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      13 PREDICATES      28 URIs      19 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.EP-2954459-A4 schema:about anzsrc-for:2746
2 anzsrc-for:3468
3 schema:author N474e25b3bfa44eb8bd18a87ccf385060
4 schema:citation sg:pub.10.3758/brm.42.1.351
5 https://doi.org/10.1109/afgr.2000.840611
6 https://doi.org/10.1109/icme.2005.1521424
7 schema:description <p num="0000">Apparatus, methods, and articles of manufacture for implementing crowdsourcing pipelines that generate training examples for machine learning expression classifiers. Crowdsourcing providers actively generate images with expressions, according to cues or goals. The cues or goals may be to mimic an expression or appear in a certain way, or to "break" an existing expression recognizer. The images are collected and rated by same or different crowdsourcing providers, and the images that meet a first quality criterion are then vetted by expert(s). The vetted images are then used as positive or negative examples in training machine learning expression classifiers.</p>
8 schema:keywords apparatus
9 article
10 certain way
11 crowdsourcing
12 cue
13 expert
14 expression
15 machine
16 method
17 quality criterion
18 training data
19 training example
20 schema:name COLLECTION OF MACHINE LEARNING TRAINING DATA FOR EXPRESSION RECOGNITION
21 schema:sameAs https://app.dimensions.ai/details/patent/EP-2954459-A4
22 schema:sdDatePublished 2019-03-07T15:37
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nfa0005ebc3c343da858c91384aab4966
25 sgo:license sg:explorer/license/
26 sgo:sdDataset patents
27 rdf:type sgo:Patent
28 N062f3d89077847e2b3bcc95fbead630f schema:name FASEL IAN
29 rdf:type schema:Person
30 N1357dd236b6341fbb66ca1288a7f0b52 rdf:first N062f3d89077847e2b3bcc95fbead630f
31 rdf:rest N26b4daef48b74da7a86bcc3bdeeb569e
32 N26b4daef48b74da7a86bcc3bdeeb569e rdf:first N37f7a2c2086744c5b8d089d0fbe72257
33 rdf:rest Nbb334150fa3446b2adceab18dba3ec40
34 N2d8ed5d229e54f81877f8cf3a55d3f58 rdf:first N5506639ad265450db697d425ae15a56a
35 rdf:rest N1357dd236b6341fbb66ca1288a7f0b52
36 N37f7a2c2086744c5b8d089d0fbe72257 schema:name LITTLEWORT GWEN FORD
37 rdf:type schema:Person
38 N3b1c0a3c55734a3fb25a1617af152d54 schema:name MOVELLAN JAVIER
39 rdf:type schema:Person
40 N474e25b3bfa44eb8bd18a87ccf385060 rdf:first N3b1c0a3c55734a3fb25a1617af152d54
41 rdf:rest N2d8ed5d229e54f81877f8cf3a55d3f58
42 N5506639ad265450db697d425ae15a56a schema:name BARTLETT MARIAN STEWARD
43 rdf:type schema:Person
44 N6111c269505e43599c9a34ea18d9ab97 schema:name SUSSKIND JOSHUA
45 rdf:type schema:Person
46 N8084262cef3b4fe58cd5909e8ec84c8a rdf:first Nb56e9c2bcfad40a389d95d9f397151bf
47 rdf:rest rdf:nil
48 Nb56e9c2bcfad40a389d95d9f397151bf schema:name WHITEHILL JACOB
49 rdf:type schema:Person
50 Nbb334150fa3446b2adceab18dba3ec40 rdf:first N6111c269505e43599c9a34ea18d9ab97
51 rdf:rest N8084262cef3b4fe58cd5909e8ec84c8a
52 Nfa0005ebc3c343da858c91384aab4966 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
55 rdf:type schema:DefinedTerm
56 anzsrc-for:3468 schema:inDefinedTermSet anzsrc-for:
57 rdf:type schema:DefinedTerm
58 sg:pub.10.3758/brm.42.1.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025687629
59 https://doi.org/10.3758/brm.42.1.351
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1109/afgr.2000.840611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094698009
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1109/icme.2005.1521424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094872563
64 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...