Methods, compositions, and kits for generating rRNA-depleted samples or isolating rRNA from samples


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

SOOKNANAN, ROY R.

ABSTRACT

The present invention provides methods, compositions, and kits for generating rRNA-depleted samples and for isolating rRNA from samples. In particular, the present invention provides compositions comprising affinity-tagged antisense rRNA molecules corresponding to substantially all of at least one rRNA molecule (e.g., 28S, 26S, 25S, 18S, 5.8S and 5S eukaryotic cytoplasmic rRNA molecules, 12S and 16S eukaryotic mitochondrial rRNA molecules, and 23S, 16S and 5S prokaryotic rRNA molecules) and methods for using such compositions to generate rRNA-depleted samples or to isolate rRNA molecules from samples. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2428", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "SOOKNANAN, ROY R.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1117389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nm1437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021172539", 
          "https://doi.org/10.1038/nm1437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0000197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023433900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030422156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036216819", 
          "https://doi.org/10.1038/nature06008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jvi.01827-07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044301923"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

The present invention provides methods, compositions, and kits for generating rRNA-depleted samples and for isolating rRNA from samples. In particular, the present invention provides compositions comprising affinity-tagged antisense rRNA molecules corresponding to substantially all of at least one rRNA molecule (e.g., 28S, 26S, 25S, 18S, 5.8S and 5S eukaryotic cytoplasmic rRNA molecules, 12S and 16S eukaryotic mitochondrial rRNA molecules, and 23S, 16S and 5S prokaryotic rRNA molecules) and methods for using such compositions to generate rRNA-depleted samples or to isolate rRNA molecules from samples.\n

", "id": "sg:patent.EP-2816111-A1", "keywords": [ "method", "composition", "kit", "sample", "rRNA", "invention", "affinity", "molecule" ], "name": "Methods, compositions, and kits for generating rRNA-depleted samples or isolating rRNA from samples", "sameAs": [ "https://app.dimensions.ai/details/patent/EP-2816111-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:29", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_03300925.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.EP-2816111-A1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.EP-2816111-A1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.EP-2816111-A1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.EP-2816111-A1'


 

This table displays all metadata directly associated to this object as RDF triples.

51 TRIPLES      13 PREDICATES      27 URIs      15 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.EP-2816111-A1 schema:about anzsrc-for:2428
2 schema:author Na63ce52b283e4911990bdb9fa6829776
3 schema:citation sg:pub.10.1038/nature03959
4 sg:pub.10.1038/nature06008
5 sg:pub.10.1038/nm1437
6 https://doi.org/10.1126/science.1117389
7 https://doi.org/10.1126/science.1150427
8 https://doi.org/10.1128/jvi.01827-07
9 https://doi.org/10.1371/journal.pone.0000197
10 schema:description <p num="pa01">The present invention provides methods, compositions, and kits for generating rRNA-depleted samples and for isolating rRNA from samples. In particular, the present invention provides compositions comprising affinity-tagged antisense rRNA molecules corresponding to substantially all of at least one rRNA molecule (e.g., 28S, 26S, 25S, 18S, 5.8S and 5S eukaryotic cytoplasmic rRNA molecules, 12S and 16S eukaryotic mitochondrial rRNA molecules, and 23S, 16S and 5S prokaryotic rRNA molecules) and methods for using such compositions to generate rRNA-depleted samples or to isolate rRNA molecules from samples. <img id="iaf01" file="imgaf001.tif" wi="78" he="103" img-content="drawing" img-format="tif"/></p>
11 schema:keywords affinity
12 composition
13 invention
14 kit
15 method
16 molecule
17 rRNA
18 sample
19 schema:name Methods, compositions, and kits for generating rRNA-depleted samples or isolating rRNA from samples
20 schema:sameAs https://app.dimensions.ai/details/patent/EP-2816111-A1
21 schema:sdDatePublished 2019-03-07T15:29
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N57e03bcd88f0419f91c32940e045e43a
24 sgo:license sg:explorer/license/
25 sgo:sdDataset patents
26 rdf:type sgo:Patent
27 N57e03bcd88f0419f91c32940e045e43a schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 Na63ce52b283e4911990bdb9fa6829776 rdf:first Ne1112ed52fd74239af325c92a1eb6b48
30 rdf:rest rdf:nil
31 Ne1112ed52fd74239af325c92a1eb6b48 schema:name SOOKNANAN, ROY R.
32 rdf:type schema:Person
33 anzsrc-for:2428 schema:inDefinedTermSet anzsrc-for:
34 rdf:type schema:DefinedTerm
35 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
36 https://doi.org/10.1038/nature03959
37 rdf:type schema:CreativeWork
38 sg:pub.10.1038/nature06008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036216819
39 https://doi.org/10.1038/nature06008
40 rdf:type schema:CreativeWork
41 sg:pub.10.1038/nm1437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021172539
42 https://doi.org/10.1038/nm1437
43 rdf:type schema:CreativeWork
44 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
45 rdf:type schema:CreativeWork
46 https://doi.org/10.1126/science.1150427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030422156
47 rdf:type schema:CreativeWork
48 https://doi.org/10.1128/jvi.01827-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044301923
49 rdf:type schema:CreativeWork
50 https://doi.org/10.1371/journal.pone.0000197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023433900
51 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...