Specimen For Detecting Infiltrative Large Intestine Tumors


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

TOYOTA MINORU , YAMAMOTO EIICHIRO , KAMIMAE SEIKO , SUZUKI HIROMU , YAMANO HIROO

ABSTRACT

Provided is a method for noninvasively obtaining an index for diagnosing the infiltration or invasive depth of a large intestine tumor. The method is characterized in that a specimen by which the infiltrative large intestine tumor can be detected is obtained by spraying a cleaning solvent onto the target large intestine mucous layer to separate the mucous from said mucous layer, and recovering the separated mucous along with the cleaning solvent. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2844", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "TOYOTA MINORU", 
        "type": "Person"
      }, 
      {
        "name": "YAMAMOTO EIICHIRO", 
        "type": "Person"
      }, 
      {
        "name": "KAMIMAE SEIKO", 
        "type": "Person"
      }, 
      {
        "name": "SUZUKI HIROMU", 
        "type": "Person"
      }, 
      {
        "name": "YAMANO HIROO", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1111/j.1572-0241.1999.00868.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003945786", 
          "https://doi.org/10.1111/j.1572-0241.1999.00868.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.38.3.365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030231017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/1940-6207.capr-10-0214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050637987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(04)16002-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051346566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1354750021000042268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058382662"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

Provided is a method for noninvasively obtaining an index for diagnosing the infiltration or invasive depth of a large intestine tumor. The method is characterized in that a specimen by which the infiltrative large intestine tumor can be detected is obtained by spraying a cleaning solvent onto the target large intestine mucous layer to separate the mucous from said mucous layer, and recovering the separated mucous along with the cleaning solvent.

", "id": "sg:patent.EP-2472257-A4", "keywords": [ "large intestine", "method", "index", "infiltration", "depth", "specimen", "cleaning", "layer" ], "name": "SPECIMEN FOR DETECTING INFILTRATIVE LARGE INTESTINE TUMORS", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.263171.0", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/EP-2472257-A4" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:34", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_962f20a5.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.EP-2472257-A4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.EP-2472257-A4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.EP-2472257-A4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.EP-2472257-A4'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      14 PREDICATES      26 URIs      15 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.EP-2472257-A4 schema:about anzsrc-for:2844
2 schema:author N553c03f0229c4c738f7259c30a27eefe
3 schema:citation sg:pub.10.1111/j.1572-0241.1999.00868.x
4 https://doi.org/10.1016/s0140-6736(04)16002-9
5 https://doi.org/10.1080/1354750021000042268
6 https://doi.org/10.1136/gut.38.3.365
7 https://doi.org/10.1158/1940-6207.capr-10-0214
8 schema:description <p>Provided is a method for noninvasively obtaining an index for diagnosing the infiltration or invasive depth of a large intestine tumor. The method is characterized in that a specimen by which the infiltrative large intestine tumor can be detected is obtained by spraying a cleaning solvent onto the target large intestine mucous layer to separate the mucous from said mucous layer, and recovering the separated mucous along with the cleaning solvent.</p>
9 schema:keywords cleaning
10 depth
11 index
12 infiltration
13 large intestine
14 layer
15 method
16 specimen
17 schema:name SPECIMEN FOR DETECTING INFILTRATIVE LARGE INTESTINE TUMORS
18 schema:recipient https://www.grid.ac/institutes/grid.263171.0
19 schema:sameAs https://app.dimensions.ai/details/patent/EP-2472257-A4
20 schema:sdDatePublished 2019-03-07T15:34
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N313203921ad74fb288694479250cee0e
23 sgo:license sg:explorer/license/
24 sgo:sdDataset patents
25 rdf:type sgo:Patent
26 N0a21acb842504d4fb9f38ff6009de614 schema:name YAMAMOTO EIICHIRO
27 rdf:type schema:Person
28 N1573c8cacbe94df0a432a29d55a6a86c rdf:first N734c81c3bc8f49c1b47982579eac91e4
29 rdf:rest N18f4b784f1d74146b01f92ff3e723846
30 N18f4b784f1d74146b01f92ff3e723846 rdf:first N78f11ee72d0641ad800cc033503a11b6
31 rdf:rest N944a300b6fc549d79634f371096fb429
32 N313203921ad74fb288694479250cee0e schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N45e99da2762f494ca566c26d05462254 rdf:first N0a21acb842504d4fb9f38ff6009de614
35 rdf:rest N1573c8cacbe94df0a432a29d55a6a86c
36 N553c03f0229c4c738f7259c30a27eefe rdf:first N6982674a4f4e4a27a40dd198647d8bf3
37 rdf:rest N45e99da2762f494ca566c26d05462254
38 N6982674a4f4e4a27a40dd198647d8bf3 schema:name TOYOTA MINORU
39 rdf:type schema:Person
40 N734c81c3bc8f49c1b47982579eac91e4 schema:name KAMIMAE SEIKO
41 rdf:type schema:Person
42 N78f11ee72d0641ad800cc033503a11b6 schema:name SUZUKI HIROMU
43 rdf:type schema:Person
44 N944a300b6fc549d79634f371096fb429 rdf:first Nd583bd63365d483b86837509cdf07c60
45 rdf:rest rdf:nil
46 Nd583bd63365d483b86837509cdf07c60 schema:name YAMANO HIROO
47 rdf:type schema:Person
48 anzsrc-for:2844 schema:inDefinedTermSet anzsrc-for:
49 rdf:type schema:DefinedTerm
50 sg:pub.10.1111/j.1572-0241.1999.00868.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003945786
51 https://doi.org/10.1111/j.1572-0241.1999.00868.x
52 rdf:type schema:CreativeWork
53 https://doi.org/10.1016/s0140-6736(04)16002-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051346566
54 rdf:type schema:CreativeWork
55 https://doi.org/10.1080/1354750021000042268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058382662
56 rdf:type schema:CreativeWork
57 https://doi.org/10.1136/gut.38.3.365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030231017
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1158/1940-6207.capr-10-0214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050637987
60 rdf:type schema:CreativeWork
61 https://www.grid.ac/institutes/grid.263171.0 schema:Organization
 




Preview window. Press ESC to close (or click here)


...