Image-Based Semantic Distance


Ontology type: sgo:Patent     


Patent Info

DATE

2013-02-13T00:00

AUTHORS

HUA XIAN-SHENG , WU LEI , LI SHIPENG

ABSTRACT

Image-based semantic distance technique embodiments are presented that involve establishing a measure of an image-based semantic distance between semantic concepts. Generally, this entails respectively computing a semantic concept representation for each concept based on a collection of images associated with the concept. A degree of difference is then computed between two semantic concept representations to produce the aforementioned semantic distance measure for the pair of corresponding concepts. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2790", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "HUA XIAN-SHENG", 
        "type": "Person"
      }, 
      {
        "name": "WU LEI", 
        "type": "Person"
      }, 
      {
        "name": "LI SHIPENG", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1291233.1291448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003624588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009962928226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016825942", 
          "https://doi.org/10.1023/a:1009962928226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2005.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094132829"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-02-13T00:00", 
    "description": "

Image-based semantic distance technique embodiments are presented that involve establishing a measure of an image-based semantic distance between semantic concepts. Generally, this entails respectively computing a semantic concept representation for each concept based on a collection of images associated with the concept. A degree of difference is then computed between two semantic concept representations to produce the aforementioned semantic distance measure for the pair of corresponding concepts.

", "id": "sg:patent.EP-2344958-A4", "keywords": [ "semantics", "embodiment", "Weight and Measure", "entail", "representation", "concept", "collection", "difference", "distance measure", "pair" ], "name": "IMAGE-BASED SEMANTIC DISTANCE", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.419815.0", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/EP-2344958-A4" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:10", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00473.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.EP-2344958-A4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.EP-2344958-A4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.EP-2344958-A4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.EP-2344958-A4'


 

This table displays all metadata directly associated to this object as RDF triples.

50 TRIPLES      15 PREDICATES      27 URIs      18 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.EP-2344958-A4 schema:about anzsrc-for:2790
2 schema:author Na49fd7e2240e49adaae134fdb4d761c9
3 schema:citation sg:pub.10.1023/a:1009962928226
4 https://doi.org/10.1109/iccv.2005.77
5 https://doi.org/10.1145/1291233.1291448
6 schema:datePublished 2013-02-13T00:00
7 schema:description <p>Image-based semantic distance technique embodiments are presented that involve establishing a measure of an image-based semantic distance between semantic concepts. Generally, this entails respectively computing a semantic concept representation for each concept based on a collection of images associated with the concept. A degree of difference is then computed between two semantic concept representations to produce the aforementioned semantic distance measure for the pair of corresponding concepts.</p>
8 schema:keywords Weight and Measure
9 collection
10 concept
11 difference
12 distance measure
13 embodiment
14 entail
15 pair
16 representation
17 semantics
18 schema:name IMAGE-BASED SEMANTIC DISTANCE
19 schema:recipient https://www.grid.ac/institutes/grid.419815.0
20 schema:sameAs https://app.dimensions.ai/details/patent/EP-2344958-A4
21 schema:sdDatePublished 2019-04-18T10:10
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N34b088726c8740bc8645230cd06ba506
24 sgo:license sg:explorer/license/
25 sgo:sdDataset patents
26 rdf:type sgo:Patent
27 N34b088726c8740bc8645230cd06ba506 schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N65bc2e9391bc4fc9876494c94b9bfeaa rdf:first N6cc8c4c0003547438b1d7f61b8920579
30 rdf:rest rdf:nil
31 N6bc7cb9e52f44401a4abe06da06911a7 schema:name WU LEI
32 rdf:type schema:Person
33 N6cc8c4c0003547438b1d7f61b8920579 schema:name LI SHIPENG
34 rdf:type schema:Person
35 N9f77961cde6d40a2b8a53ce5145ada61 rdf:first N6bc7cb9e52f44401a4abe06da06911a7
36 rdf:rest N65bc2e9391bc4fc9876494c94b9bfeaa
37 Na49fd7e2240e49adaae134fdb4d761c9 rdf:first Nde4c68e48e544b0291da27bffd54c349
38 rdf:rest N9f77961cde6d40a2b8a53ce5145ada61
39 Nde4c68e48e544b0291da27bffd54c349 schema:name HUA XIAN-SHENG
40 rdf:type schema:Person
41 anzsrc-for:2790 schema:inDefinedTermSet anzsrc-for:
42 rdf:type schema:DefinedTerm
43 sg:pub.10.1023/a:1009962928226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016825942
44 https://doi.org/10.1023/a:1009962928226
45 rdf:type schema:CreativeWork
46 https://doi.org/10.1109/iccv.2005.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094132829
47 rdf:type schema:CreativeWork
48 https://doi.org/10.1145/1291233.1291448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003624588
49 rdf:type schema:CreativeWork
50 https://www.grid.ac/institutes/grid.419815.0 schema:Organization
 




Preview window. Press ESC to close (or click here)


...