Nanoscale devices


Ontology type: npg:Subject  | skos:Concept     


Concept Info

NAME

Nanoscale devices

DESCRIPTION

Nanoscale devices are devices that are one hundred to ten thousand times smaller than human cells and that can manipulate matter on atomic or molecular scales. Examples of nanoscale devices are synthetic molecular motors such as rotaxanes, graphene-based transistors and nanoelectromechanical oscillators.

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices", 
    "rdfs:label": "Nanoscale devices", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscience-and-technology"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Nanoscale devices are devices that are one hundred to ten thousand times smaller than human cells and that can manipulate matter on atomic or molecular scales. Examples of nanoscale devices are synthetic molecular motors such as rotaxanes, graphene-based transistors and nanoelectromechanical oscillators."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:narrower": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/electronic-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/superconducting-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/magnetic-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanofluidics"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/biosensors"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nems"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/quantum-information"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/molecular-machines-and-motors"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/sensors"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanophotonics-and-plasmonics"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanosensors"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanopores"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/molecular-electronics"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Nanoscale devices"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#Concept", 
      "http://ns.nature.com/terms/Subject"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/electronic-devices", 
    "rdfs:label": "Electronic devices", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/materials-for-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Electronic devices are components for controlling the flow of electrical currents for the purpose of information processing and system control. Prominent examples include transistors and diodes. Electronic devices are usually small and can be grouped together into packages called integrated circuits. This miniaturization is central to the modern electronics boom."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Electronic devices"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#Concept", 
      "http://ns.nature.com/terms/Subject"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/superconducting-devices", 
    "rdfs:label": "Superconducting devices", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/electronics-photonics-and-device-physics"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Superconducting devices are electronic devices that harness the zero-resistance properties of superconductors. Superconducting devices are used for highly sensitive optical sensors, detectors of magnetic fields and low-noise amplifiers. Superconducting circuits are one possible type of qubit, the building blocks of quantum computers."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Superconducting devices"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/magnetic-devices", 
    "rdfs:label": "Magnetic devices", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Magnetic devices are components for creating, manipulating or detecting magnetic fields. This can include magnetic memories, magnetometers and devices for magneto-optics. Magnetism can also play a central role in spintronic devices."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Magnetic devices"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#Concept", 
      "http://ns.nature.com/terms/Subject"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/nanofluidics", 
    "rdfs:label": "Nanofluidics", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Nanofluidics is the study and manipulation of fluids confined within nanostructures. The fluid dynamics of substances on the nanoscale differs significantly from the fluid dynamics of substances on longer length scales."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Nanofluidics"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#Concept", 
      "http://ns.nature.com/terms/Subject"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/biosensors", 
    "rdfs:label": "Biosensors", 
    "sdDataset": "onto_subjects", 
    "skos:altLabel": [
      {
        "@language": "en", 
        "@value": "Biosensing Technics"
      }, 
      {
        "@language": "en", 
        "@value": "Enzyme Electrodes"
      }, 
      {
        "@language": "en", 
        "@value": "Biosensor"
      }, 
      {
        "@language": "en", 
        "@value": "Biosensing Techniques"
      }, 
      {
        "@language": "en", 
        "@value": "Bioprobes"
      }, 
      {
        "@language": "en", 
        "@value": "Biosensing Technic"
      }, 
      {
        "@language": "en", 
        "@value": "Enzyme Electrode"
      }, 
      {
        "@language": "en", 
        "@value": "Biosensing Technique"
      }, 
      {
        "@language": "en", 
        "@value": "Bioprobe"
      }
    ], 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanobiotechnology"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Biosensors are devices used to detect the presence or concentration of a biological analyte, such as a biomolecule, a biological structure or a microorganism. Biosensors consist of three parts: a component that recognizes the analyte and produces a signal, a signal transducer, and a reader device."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Biosensors"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/nems", 
    "rdfs:label": "NEMS", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "NEMS, or nanoelectromechanical systems, are devices in which the physical motion of a nanometre-scale structure is controlled by an electronic circuit, or vice versa. NEMS make particularly sensitive sensors, of chemicals and acceleration, for example. NEMS also offer the possibility of observing quantum effects in systems much larger than few-atom ensembles."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "NEMS"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/quantum-information", 
    "rdfs:label": "Quantum information", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/quantum-physics"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Quantum information is problem solving and data processing using a quantum system as the information carrier, rather than binary \u20181\u2019s and \u20180\u2019s used in conventional computation. Quantum information systems could be able to transmit data that is fundamentally secure and solve problems that are beyond the power of modern computers."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Quantum information"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/molecular-machines-and-motors", 
    "rdfs:label": "Molecular machines and motors", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-materials"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Molecular motors, also called molecular machines, are either natural or synthetic molecules that convert chemical energy into mechanical forces and motion. An example of a biological motor is the protein kinesin, which uses the hydrolysis of adenosine triphosphate to move along microtubule filaments."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Molecular machines and motors"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#Concept", 
      "http://ns.nature.com/terms/Subject"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/sensors", 
    "rdfs:label": "Sensors", 
    "sdDataset": "onto_subjects", 
    "skos:altLabel": [
      {
        "@language": "en", 
        "@value": "Detectors"
      }
    ], 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/analytical-chemistry"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Sensors are devices that detect and quantify physical aspects of the world around us. The measurement can either be read directly or converted to a signal for processing by electrical, hydraulic or pneumatic systems. Sensors can quantify everything from temperature, light intensity and mechanical stress to salinity, heart rate and blood pressure."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Sensors"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#Concept", 
      "http://ns.nature.com/terms/Subject"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/nanophotonics-and-plasmonics", 
    "rdfs:label": "Nanophotonics and plasmonics", 
    "sdDataset": "onto_subjects", 
    "skos:altLabel": [
      {
        "@language": "en", 
        "@value": "Nano-optics"
      }
    ], 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/optical-physics"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/materials-for-optics"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Nanophotonics and plasmonics is the study of light at the nanometre-scale. Light can only be focused to a spot roughly half its wavelength in size (a few hundred nanometres for visible light). This limit can be surpassed by coupling light to electrons at the surface of a metal and creating surface plasmons."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Nanophotonics and plasmonics"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/nanosensors", 
    "rdfs:label": "Nanosensors", 
    "sdDataset": "onto_subjects", 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Nanosensors are chemical or mechanical sensors that can be used to detect the presence of chemical species and nanoparticles, or monitor physical parameters such as temperature, on the nanoscale. They also find use in medical diagnostic applications."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Nanosensors"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#Concept", 
      "http://ns.nature.com/terms/Subject"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/nanopores", 
    "rdfs:label": "Nanopores", 
    "sdDataset": "onto_subjects", 
    "skos:altLabel": [
      {
        "@language": "en", 
        "@value": "Nanopore"
      }
    ], 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanobiotechnology"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Nanopores are nanoscale pores in electrically insulating materials used to study the physical properties of biomolecules by measuring changes in current as individual molecules transit. Nanopore arrays are constructed from channel proteins in lipid membranes or from pores patterned in synthetic materials, and can sequence DNA or characterize protein folding."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Nanopores"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/molecular-electronics", 
    "rdfs:label": "Molecular electronics", 
    "sdDataset": "onto_subjects", 
    "skos:altLabel": [
      {
        "@language": "en", 
        "@value": "Moletronics"
      }
    ], 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/condensed-matter-physics"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Molecular electronics is the use of molecules as the primary building block for electronic circuitry. A molecular approach, it is hoped, will enable the construction of much smaller circuits than is currently possible using the more conventional semiconductors such as silicon. The motion of the electrons in such devices is inherently governed by quantum mechanics."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Molecular electronics"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://www.w3.org/2004/02/skos/core#Concept", 
    "rdfs:subClassOf": [
      {
        "id": "http://www.w3.org/2004/02/skos/core#Concept"
      }, 
      {
        "id": "http://www.w3.org/2000/01/rdf-schema#Resource"
      }
    ], 
    "sdDataset": "for_codes", 
    "type": [
      "http://www.w3.org/2000/01/rdf-schema#Resource", 
      "http://www.w3.org/2000/01/rdf-schema#Class"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscience-and-technology", 
    "rdfs:label": "Nanoscience and technology", 
    "sdDataset": "onto_subjects", 
    "skos:altLabel": [
      {
        "@language": "en", 
        "@value": "Nanotechnologies"
      }
    ], 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/physical-sciences"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Nanoscience and technology is the branch of science that studies systems and manipulates matter on atomic, molecular and supramolecular scales (the nanometre scale). On such a length scale, quantum mechanical and surface boundary effects become relevant, conferring properties on materials that are not observable on larger, macroscopic length scales."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:narrower": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanomedicine"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanotoxicology"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanobiotechnology"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-devices"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/dna-nanotechnology"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/other-nanotechnology"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/techniques-and-instrumentation"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/nanoscale-materials"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/graphene"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Nanoscience and technology"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "dcterms:description": [
      {
        "@language": "en", 
        "@value": "The Nature Subjects Taxonomy is a polyhierarchical categorization of scholarly subject areas which are used for the indexing of content by Springer Nature."
      }
    ], 
    "dcterms:title": [
      {
        "@language": "en", 
        "@value": "Nature Subjects Taxonomy"
      }
    ], 
    "id": "http://scigraph.springernature.com/ontologies/subjects/", 
    "sdDataset": "onto_subjects", 
    "skos:hasTopConcept": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/physical-sciences"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/DEPRECATED"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/business-and-commerce"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/humanities"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/social-science"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/health-sciences"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/scientific-community-and-society"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/earth-and-environmental-sciences"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/biological-sciences"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#ConceptScheme"
    ]
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/ontologies/subjects/nanoscale-devices'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/ontologies/subjects/nanoscale-devices'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/ontologies/subjects/nanoscale-devices'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/ontologies/subjects/nanoscale-devices'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      9 PREDICATES      23 URIs      4 LITERALS

Subject Predicate Object
1 sg:ontologies/subjects/nanoscale-devices sgo:license sg:explorer/license/
2 sgo:sdDataset onto_subjects
3 rdf:type npg:Subject
4 skos:Concept
5 rdfs:label Nanoscale devices
6 skos:broader sg:ontologies/subjects/nanoscience-and-technology
7 skos:definition Nanoscale devices are devices that are one hundred to ten thousand times smaller than human cells and that can manipulate matter on atomic or molecular scales. Examples of nanoscale devices are synthetic molecular motors such as rotaxanes, graphene-based transistors and nanoelectromechanical oscillators.
8 skos:inScheme sg:ontologies/subjects/
9 skos:narrower sg:ontologies/subjects/biosensors
10 sg:ontologies/subjects/electronic-devices
11 sg:ontologies/subjects/magnetic-devices
12 sg:ontologies/subjects/molecular-electronics
13 sg:ontologies/subjects/molecular-machines-and-motors
14 sg:ontologies/subjects/nanofluidics
15 sg:ontologies/subjects/nanophotonics-and-plasmonics
16 sg:ontologies/subjects/nanopores
17 sg:ontologies/subjects/nanosensors
18 sg:ontologies/subjects/nems
19 sg:ontologies/subjects/quantum-information
20 sg:ontologies/subjects/sensors
21 sg:ontologies/subjects/superconducting-devices
22 skos:prefLabel Nanoscale devices
23 sg:ontologies/subjects/ dcterms:description The Nature Subjects Taxonomy is a polyhierarchical categorization of scholarly subject areas which are used for the indexing of content by Springer Nature.
24 dcterms:title Nature Subjects Taxonomy
25 sgo:sdDataset onto_subjects
26 rdf:type skos:ConceptScheme
27 skos:hasTopConcept sg:ontologies/subjects/DEPRECATED
28 sg:ontologies/subjects/biological-sciences
29 sg:ontologies/subjects/business-and-commerce
30 sg:ontologies/subjects/earth-and-environmental-sciences
31 sg:ontologies/subjects/health-sciences
32 sg:ontologies/subjects/humanities
33 sg:ontologies/subjects/physical-sciences
34 sg:ontologies/subjects/scientific-community-and-society
35 sg:ontologies/subjects/social-science
36 sg:ontologies/subjects/biosensors sgo:sdDataset onto_subjects
37 rdf:type npg:Subject
38 skos:Concept
39 rdfs:label Biosensors
40 skos:altLabel Bioprobe
41 Bioprobes
42 Biosensing Technic
43 Biosensing Technics
44 Biosensing Technique
45 Biosensing Techniques
46 Biosensor
47 Enzyme Electrode
48 Enzyme Electrodes
49 skos:broader sg:ontologies/subjects/nanobiotechnology
50 sg:ontologies/subjects/nanoscale-devices
51 skos:definition Biosensors are devices used to detect the presence or concentration of a biological analyte, such as a biomolecule, a biological structure or a microorganism. Biosensors consist of three parts: a component that recognizes the analyte and produces a signal, a signal transducer, and a reader device.
52 skos:inScheme sg:ontologies/subjects/
53 skos:prefLabel Biosensors
54 sg:ontologies/subjects/electronic-devices sgo:sdDataset onto_subjects
55 rdf:type npg:Subject
56 skos:Concept
57 rdfs:label Electronic devices
58 skos:broader sg:ontologies/subjects/materials-for-devices
59 sg:ontologies/subjects/nanoscale-devices
60 skos:definition Electronic devices are components for controlling the flow of electrical currents for the purpose of information processing and system control. Prominent examples include transistors and diodes. Electronic devices are usually small and can be grouped together into packages called integrated circuits. This miniaturization is central to the modern electronics boom.
61 skos:inScheme sg:ontologies/subjects/
62 skos:prefLabel Electronic devices
63 sg:ontologies/subjects/magnetic-devices sgo:sdDataset onto_subjects
64 rdf:type npg:Subject
65 skos:Concept
66 rdfs:label Magnetic devices
67 skos:broader sg:ontologies/subjects/nanoscale-devices
68 skos:definition Magnetic devices are components for creating, manipulating or detecting magnetic fields. This can include magnetic memories, magnetometers and devices for magneto-optics. Magnetism can also play a central role in spintronic devices.
69 skos:inScheme sg:ontologies/subjects/
70 skos:prefLabel Magnetic devices
71 sg:ontologies/subjects/molecular-electronics sgo:sdDataset onto_subjects
72 rdf:type npg:Subject
73 skos:Concept
74 rdfs:label Molecular electronics
75 skos:altLabel Moletronics
76 skos:broader sg:ontologies/subjects/condensed-matter-physics
77 sg:ontologies/subjects/nanoscale-devices
78 skos:definition Molecular electronics is the use of molecules as the primary building block for electronic circuitry. A molecular approach, it is hoped, will enable the construction of much smaller circuits than is currently possible using the more conventional semiconductors such as silicon. The motion of the electrons in such devices is inherently governed by quantum mechanics.
79 skos:inScheme sg:ontologies/subjects/
80 skos:prefLabel Molecular electronics
81 sg:ontologies/subjects/molecular-machines-and-motors sgo:sdDataset onto_subjects
82 rdf:type npg:Subject
83 skos:Concept
84 rdfs:label Molecular machines and motors
85 skos:broader sg:ontologies/subjects/nanoscale-devices
86 sg:ontologies/subjects/nanoscale-materials
87 skos:definition Molecular motors, also called molecular machines, are either natural or synthetic molecules that convert chemical energy into mechanical forces and motion. An example of a biological motor is the protein kinesin, which uses the hydrolysis of adenosine triphosphate to move along microtubule filaments.
88 skos:inScheme sg:ontologies/subjects/
89 skos:prefLabel Molecular machines and motors
90 sg:ontologies/subjects/nanofluidics sgo:sdDataset onto_subjects
91 rdf:type npg:Subject
92 skos:Concept
93 rdfs:label Nanofluidics
94 skos:broader sg:ontologies/subjects/nanoscale-devices
95 skos:definition Nanofluidics is the study and manipulation of fluids confined within nanostructures. The fluid dynamics of substances on the nanoscale differs significantly from the fluid dynamics of substances on longer length scales.
96 skos:inScheme sg:ontologies/subjects/
97 skos:prefLabel Nanofluidics
98 sg:ontologies/subjects/nanophotonics-and-plasmonics sgo:sdDataset onto_subjects
99 rdf:type npg:Subject
100 skos:Concept
101 rdfs:label Nanophotonics and plasmonics
102 skos:altLabel Nano-optics
103 skos:broader sg:ontologies/subjects/materials-for-optics
104 sg:ontologies/subjects/nanoscale-devices
105 sg:ontologies/subjects/optical-physics
106 skos:definition Nanophotonics and plasmonics is the study of light at the nanometre-scale. Light can only be focused to a spot roughly half its wavelength in size (a few hundred nanometres for visible light). This limit can be surpassed by coupling light to electrons at the surface of a metal and creating surface plasmons.
107 skos:inScheme sg:ontologies/subjects/
108 skos:prefLabel Nanophotonics and plasmonics
109 sg:ontologies/subjects/nanopores sgo:sdDataset onto_subjects
110 rdf:type npg:Subject
111 skos:Concept
112 rdfs:label Nanopores
113 skos:altLabel Nanopore
114 skos:broader sg:ontologies/subjects/nanobiotechnology
115 sg:ontologies/subjects/nanoscale-devices
116 skos:definition Nanopores are nanoscale pores in electrically insulating materials used to study the physical properties of biomolecules by measuring changes in current as individual molecules transit. Nanopore arrays are constructed from channel proteins in lipid membranes or from pores patterned in synthetic materials, and can sequence DNA or characterize protein folding.
117 skos:inScheme sg:ontologies/subjects/
118 skos:prefLabel Nanopores
119 sg:ontologies/subjects/nanoscience-and-technology sgo:sdDataset onto_subjects
120 rdf:type npg:Subject
121 skos:Concept
122 rdfs:label Nanoscience and technology
123 skos:altLabel Nanotechnologies
124 skos:broader sg:ontologies/subjects/physical-sciences
125 skos:definition Nanoscience and technology is the branch of science that studies systems and manipulates matter on atomic, molecular and supramolecular scales (the nanometre scale). On such a length scale, quantum mechanical and surface boundary effects become relevant, conferring properties on materials that are not observable on larger, macroscopic length scales.
126 skos:inScheme sg:ontologies/subjects/
127 skos:narrower sg:ontologies/subjects/dna-nanotechnology
128 sg:ontologies/subjects/graphene
129 sg:ontologies/subjects/nanobiotechnology
130 sg:ontologies/subjects/nanomedicine
131 sg:ontologies/subjects/nanoscale-devices
132 sg:ontologies/subjects/nanoscale-materials
133 sg:ontologies/subjects/nanotoxicology
134 sg:ontologies/subjects/other-nanotechnology
135 sg:ontologies/subjects/techniques-and-instrumentation
136 skos:prefLabel Nanoscience and technology
137 sg:ontologies/subjects/nanosensors sgo:sdDataset onto_subjects
138 rdf:type npg:Subject
139 skos:Concept
140 rdfs:label Nanosensors
141 skos:broader sg:ontologies/subjects/nanoscale-devices
142 skos:definition Nanosensors are chemical or mechanical sensors that can be used to detect the presence of chemical species and nanoparticles, or monitor physical parameters such as temperature, on the nanoscale. They also find use in medical diagnostic applications.
143 skos:inScheme sg:ontologies/subjects/
144 skos:prefLabel Nanosensors
145 sg:ontologies/subjects/nems sgo:sdDataset onto_subjects
146 rdf:type npg:Subject
147 skos:Concept
148 rdfs:label NEMS
149 skos:broader sg:ontologies/subjects/nanoscale-devices
150 skos:definition NEMS, or nanoelectromechanical systems, are devices in which the physical motion of a nanometre-scale structure is controlled by an electronic circuit, or vice versa. NEMS make particularly sensitive sensors, of chemicals and acceleration, for example. NEMS also offer the possibility of observing quantum effects in systems much larger than few-atom ensembles.
151 skos:inScheme sg:ontologies/subjects/
152 skos:prefLabel NEMS
153 sg:ontologies/subjects/quantum-information sgo:sdDataset onto_subjects
154 rdf:type npg:Subject
155 skos:Concept
156 rdfs:label Quantum information
157 skos:broader sg:ontologies/subjects/nanoscale-devices
158 sg:ontologies/subjects/quantum-physics
159 skos:definition Quantum information is problem solving and data processing using a quantum system as the information carrier, rather than binary ‘1’s and ‘0’s used in conventional computation. Quantum information systems could be able to transmit data that is fundamentally secure and solve problems that are beyond the power of modern computers.
160 skos:inScheme sg:ontologies/subjects/
161 skos:prefLabel Quantum information
162 sg:ontologies/subjects/sensors sgo:sdDataset onto_subjects
163 rdf:type npg:Subject
164 skos:Concept
165 rdfs:label Sensors
166 skos:altLabel Detectors
167 skos:broader sg:ontologies/subjects/analytical-chemistry
168 sg:ontologies/subjects/nanoscale-devices
169 skos:definition Sensors are devices that detect and quantify physical aspects of the world around us. The measurement can either be read directly or converted to a signal for processing by electrical, hydraulic or pneumatic systems. Sensors can quantify everything from temperature, light intensity and mechanical stress to salinity, heart rate and blood pressure.
170 skos:inScheme sg:ontologies/subjects/
171 skos:prefLabel Sensors
172 sg:ontologies/subjects/superconducting-devices sgo:sdDataset onto_subjects
173 rdf:type npg:Subject
174 skos:Concept
175 rdfs:label Superconducting devices
176 skos:broader sg:ontologies/subjects/electronics-photonics-and-device-physics
177 sg:ontologies/subjects/nanoscale-devices
178 skos:definition Superconducting devices are electronic devices that harness the zero-resistance properties of superconductors. Superconducting devices are used for highly sensitive optical sensors, detectors of magnetic fields and low-noise amplifiers. Superconducting circuits are one possible type of qubit, the building blocks of quantum computers.
179 skos:inScheme sg:ontologies/subjects/
180 skos:prefLabel Superconducting devices
181 skos:Concept sgo:sdDataset for_codes
182 rdf:type rdfs:Class
183 rdfs:Resource
184 rdfs:subClassOf rdfs:Resource
185 skos:Concept
 




Preview window. Press ESC to close (or click here)


...