Data processing


Ontology type: npg:Subject  | skos:Concept     


Concept Info

NAME

Data processing

DESCRIPTION

Data processing is a set of methods that are used to input, retrieve, verify, store, organize, analyse or interpret a set of data. Data processing enables information to be automatically extracted from data, and could be used in computational biology and bioinformatics to organise a large set of 'omics data.

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/data-processing", 
    "rdfs:label": "Data processing", 
    "sdDataset": "onto_subjects", 
    "skos:altLabel": [
      {
        "@language": "en", 
        "@value": "Machine-Readable Data Files"
      }, 
      {
        "@language": "en", 
        "@value": "Optical Reader"
      }, 
      {
        "@language": "en", 
        "@value": "Bar Codes"
      }, 
      {
        "@language": "en", 
        "@value": "Machine-Readable Data File"
      }, 
      {
        "@language": "en", 
        "@value": "Machine Readable Data Files"
      }, 
      {
        "@language": "en", 
        "@value": "Optical Readers"
      }, 
      {
        "@language": "en", 
        "@value": "Information Processing"
      }, 
      {
        "@language": "en", 
        "@value": "Data File"
      }, 
      {
        "@language": "en", 
        "@value": "Automatic Information Processing"
      }, 
      {
        "@language": "en", 
        "@value": "Data Files"
      }, 
      {
        "@language": "en", 
        "@value": "Electronic Data Processing"
      }, 
      {
        "@language": "en", 
        "@value": "Automatic Data Processing"
      }, 
      {
        "@language": "en", 
        "@value": "Computer Data Processing"
      }, 
      {
        "@language": "en", 
        "@value": "Bar Code"
      }
    ], 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/computational-biology-and-bioinformatics"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Data processing is a set of methods that are used to input, retrieve, verify, store, organize, analyse or interpret a set of data. Data processing enables information to be automatically extracted from data, and could be used in computational biology and bioinformatics to organise a large set of 'omics data."
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Data processing"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#Concept", 
      "http://ns.nature.com/terms/Subject"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://scigraph.springernature.com/ontologies/subjects/computational-biology-and-bioinformatics", 
    "rdfs:label": "Computational biology and bioinformatics", 
    "sdDataset": "onto_subjects", 
    "skos:altLabel": [
      {
        "@language": "en", 
        "@value": "Bio-Informatics"
      }, 
      {
        "@language": "en", 
        "@value": "Bioinformatics"
      }, 
      {
        "@language": "en", 
        "@value": "Computational Molecular Biology"
      }
    ], 
    "skos:broader": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/biological-sciences"
      }
    ], 
    "skos:definition": [
      {
        "@language": "en", 
        "@value": "Computational biology and bioinformatics is an interdisciplinary field that develops and applies computational methods to analyse large collections of biological data, such as genetic sequences, cell populations or protein samples, to make new predictions or discover new biology. The computational methods used include analytical methods, mathematical modelling and simulation. "
      }
    ], 
    "skos:inScheme": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/"
      }
    ], 
    "skos:narrower": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/sequence-annotation"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/protein-design"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/protein-folding"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/machine-learning"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/programming-language-and-code"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/high-throughput-screening"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/protein-analysis"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/data-acquisition"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/hardware-and-infrastructure"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/literature-mining"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/databases"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/software"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/gene-regulatory-networks"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/protein-function-predictions"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/probabilistic-data-networks"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/standards"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/virtual-drug-screening"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/data-integration"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/scale-invariance"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/data-publication-and-archiving"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/functional-clustering"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/gene-ontology"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/classification-and-taxonomy"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/genome-informatics"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/cellular-signalling-networks"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/power-law"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/biochemical-reaction-networks"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/statistical-methods"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/computational-neuroscience"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/communication-and-replication"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/computational-models"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/network-topology"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/quality-control"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/protein-structure-predictions"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/data-processing"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/microarrays"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/image-processing"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/predictive-medicine"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/phylogeny"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/computational-platforms-and-environments"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/data-mining"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/proteome-informatics"
      }
    ], 
    "skos:prefLabel": [
      {
        "@language": "en", 
        "@value": "Computational biology and bioinformatics"
      }
    ], 
    "type": [
      "http://ns.nature.com/terms/Subject", 
      "http://www.w3.org/2004/02/skos/core#Concept"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "id": "http://www.w3.org/2004/02/skos/core#Concept", 
    "rdfs:subClassOf": [
      {
        "id": "http://www.w3.org/2004/02/skos/core#Concept"
      }, 
      {
        "id": "http://www.w3.org/2000/01/rdf-schema#Resource"
      }
    ], 
    "sdDataset": "for_codes", 
    "type": [
      "http://www.w3.org/2000/01/rdf-schema#Resource", 
      "http://www.w3.org/2000/01/rdf-schema#Class"
    ]
  }, 
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "dcterms:description": [
      {
        "@language": "en", 
        "@value": "The Nature Subjects Taxonomy is a polyhierarchical categorization of scholarly subject areas which are used for the indexing of content by Springer Nature."
      }
    ], 
    "dcterms:title": [
      {
        "@language": "en", 
        "@value": "Nature Subjects Taxonomy"
      }
    ], 
    "id": "http://scigraph.springernature.com/ontologies/subjects/", 
    "sdDataset": "onto_subjects", 
    "skos:hasTopConcept": [
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/physical-sciences"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/DEPRECATED"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/business-and-commerce"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/humanities"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/social-science"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/health-sciences"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/scientific-community-and-society"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/earth-and-environmental-sciences"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/subjects/biological-sciences"
      }
    ], 
    "type": [
      "http://www.w3.org/2004/02/skos/core#ConceptScheme"
    ]
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/ontologies/subjects/data-processing'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/ontologies/subjects/data-processing'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/ontologies/subjects/data-processing'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/ontologies/subjects/data-processing'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      9 PREDICATES      24 URIs      18 LITERALS

Subject Predicate Object
1 sg:ontologies/subjects/data-processing sgo:license sg:explorer/license/
2 sgo:sdDataset onto_subjects
3 rdf:type npg:Subject
4 skos:Concept
5 rdfs:label Data processing
6 skos:altLabel Automatic Data Processing
7 Automatic Information Processing
8 Bar Code
9 Bar Codes
10 Computer Data Processing
11 Data File
12 Data Files
13 Electronic Data Processing
14 Information Processing
15 Machine Readable Data Files
16 Machine-Readable Data File
17 Machine-Readable Data Files
18 Optical Reader
19 Optical Readers
20 skos:broader sg:ontologies/subjects/computational-biology-and-bioinformatics
21 skos:definition Data processing is a set of methods that are used to input, retrieve, verify, store, organize, analyse or interpret a set of data. Data processing enables information to be automatically extracted from data, and could be used in computational biology and bioinformatics to organise a large set of 'omics data.
22 skos:inScheme sg:ontologies/subjects/
23 skos:prefLabel Data processing
24 sg:ontologies/subjects/ dcterms:description The Nature Subjects Taxonomy is a polyhierarchical categorization of scholarly subject areas which are used for the indexing of content by Springer Nature.
25 dcterms:title Nature Subjects Taxonomy
26 sgo:sdDataset onto_subjects
27 rdf:type skos:ConceptScheme
28 skos:hasTopConcept sg:ontologies/subjects/DEPRECATED
29 sg:ontologies/subjects/biological-sciences
30 sg:ontologies/subjects/business-and-commerce
31 sg:ontologies/subjects/earth-and-environmental-sciences
32 sg:ontologies/subjects/health-sciences
33 sg:ontologies/subjects/humanities
34 sg:ontologies/subjects/physical-sciences
35 sg:ontologies/subjects/scientific-community-and-society
36 sg:ontologies/subjects/social-science
37 sg:ontologies/subjects/computational-biology-and-bioinformatics sgo:sdDataset onto_subjects
38 rdf:type npg:Subject
39 skos:Concept
40 rdfs:label Computational biology and bioinformatics
41 skos:altLabel Bio-Informatics
42 Bioinformatics
43 Computational Molecular Biology
44 skos:broader sg:ontologies/subjects/biological-sciences
45 skos:definition Computational biology and bioinformatics is an interdisciplinary field that develops and applies computational methods to analyse large collections of biological data, such as genetic sequences, cell populations or protein samples, to make new predictions or discover new biology. The computational methods used include analytical methods, mathematical modelling and simulation.
46 skos:inScheme sg:ontologies/subjects/
47 skos:narrower sg:ontologies/subjects/biochemical-reaction-networks
48 sg:ontologies/subjects/cellular-signalling-networks
49 sg:ontologies/subjects/classification-and-taxonomy
50 sg:ontologies/subjects/communication-and-replication
51 sg:ontologies/subjects/computational-models
52 sg:ontologies/subjects/computational-neuroscience
53 sg:ontologies/subjects/computational-platforms-and-environments
54 sg:ontologies/subjects/data-acquisition
55 sg:ontologies/subjects/data-integration
56 sg:ontologies/subjects/data-mining
57 sg:ontologies/subjects/data-processing
58 sg:ontologies/subjects/data-publication-and-archiving
59 sg:ontologies/subjects/databases
60 sg:ontologies/subjects/functional-clustering
61 sg:ontologies/subjects/gene-ontology
62 sg:ontologies/subjects/gene-regulatory-networks
63 sg:ontologies/subjects/genome-informatics
64 sg:ontologies/subjects/hardware-and-infrastructure
65 sg:ontologies/subjects/high-throughput-screening
66 sg:ontologies/subjects/image-processing
67 sg:ontologies/subjects/literature-mining
68 sg:ontologies/subjects/machine-learning
69 sg:ontologies/subjects/microarrays
70 sg:ontologies/subjects/network-topology
71 sg:ontologies/subjects/phylogeny
72 sg:ontologies/subjects/power-law
73 sg:ontologies/subjects/predictive-medicine
74 sg:ontologies/subjects/probabilistic-data-networks
75 sg:ontologies/subjects/programming-language-and-code
76 sg:ontologies/subjects/protein-analysis
77 sg:ontologies/subjects/protein-design
78 sg:ontologies/subjects/protein-folding
79 sg:ontologies/subjects/protein-function-predictions
80 sg:ontologies/subjects/protein-structure-predictions
81 sg:ontologies/subjects/proteome-informatics
82 sg:ontologies/subjects/quality-control
83 sg:ontologies/subjects/scale-invariance
84 sg:ontologies/subjects/sequence-annotation
85 sg:ontologies/subjects/software
86 sg:ontologies/subjects/standards
87 sg:ontologies/subjects/statistical-methods
88 sg:ontologies/subjects/virtual-drug-screening
89 skos:prefLabel Computational biology and bioinformatics
90 skos:Concept sgo:sdDataset for_codes
91 rdf:type rdfs:Class
92 rdfs:Resource
93 rdfs:subClassOf rdfs:Resource
94 skos:Concept
 




Preview window. Press ESC to close (or click here)


...