International Journal of Data Science and Analytics View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

2016

PUBLISHER

Springer International Publishing

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/41060

Recent publications latest 20 shown

  • 2019-04-11 Resampling-based predictive simulation framework of stochastic diffusion model for identifying top-K influential nodes
  • 2019-04-08 Correction to: Exposing the probabilistic causal structure of discrimination
  • 2019-04-01 Compressing unstructured mesh data from simulations using machine learning
  • 2019-04 Sloppiness mitigation in crowdsourcing: detecting and correcting bias for crowd scoring tasks
  • 2019-04 Characterizing negative sentiments in at-risk populations via crowd computing: a computational social science approach
  • 2019-04 FIRE: a two-level interactive visualization for deep exploration of association rules
  • 2019-04 Identifying key factors of student academic performance by subgroup discovery
  • 2019-03-30 FaiRecSys: mitigating algorithmic bias in recommender systems
  • 2019-03-28 Semantic-aware aircraft trajectory prediction using flight plans
  • 2019-03-04 A low-sensitivity quantitative measure for traffic safety data analytics
  • 2019-03 Regression-based supervised learning of autosteering of a road car featuring a delayed steering response
  • 2019-03 Spatial-aware hyperspectral image classification via multifeature kernel dictionary learning
  • 2019-03 Dimension-based subspace search for outlier detection
  • 2019-03 Easy-Mention: a model-driven mention recommendation heuristic to boost your tweet popularity
  • 2019-03 Quant data science meets dexterous artistry
  • 2019-03 Elliptical modeling and pattern analysis for perturbation models and classification
  • 2019-02-22 Entity-level stream classification: exploiting entity similarity to label the future observations referring to an entity
  • 2019-02-12 Harnessing social media data for pharmacovigilance: a review of current state of the art, challenges and future directions
  • 2019-02-08 Modeling of laser-induced breakdown spectroscopic data analysis by an automatic classifier
  • 2019-02-05 Problems with research methods in medical device big data analytics
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I18030", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Data Mining and Knowledge Discovery", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I18024", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Database Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I23050", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computational Biology/Bioinformatics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/522030", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Business Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "description": "

    Data Science\u00a0has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social sci\u00adence, and lifestyle. The field encompasses the larger ar\u00adeas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new sci\u00adentific chal\u00adlenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and vis\u00adualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation. The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations.

    ", "editor": [ { "familyName": "Cao", "givenName": "Longbing", "type": "Person" } ], "id": "sg:journal.1156617", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "2364-415X", "2364-4168" ], "license": "Hybrid (Open Choice)", "name": "International Journal of Data Science and Analytics", "productId": [ { "name": "springer_id", "type": "PropertyValue", "value": [ "41060" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101697185" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "156617" ] } ], "publisher": { "name": "Springer International Publishing", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1156617" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "startYear": "2016", "type": "Periodical", "url": "http://link.springer.com/journal/41060" } ]

     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1156617'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1156617'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1156617'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1156617'


     

    This table displays all metadata directly associated to this object as RDF triples.

    60 TRIPLES      20 PREDICATES      28 URIs      19 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1156617 schema:about sg:ontologies/product-market-codes/522030
    2 sg:ontologies/product-market-codes/I18024
    3 sg:ontologies/product-market-codes/I18030
    4 sg:ontologies/product-market-codes/I21000
    5 sg:ontologies/product-market-codes/I23050
    6 schema:description <p>Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social sci­ence, and lifestyle. The field encompasses the larger ar­eas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new sci­entific chal­lenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and vis­ualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation. The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations.</p><p/><p/>
    7 schema:editor N3d5e17cf142241e38132b03a0e5c339d
    8 schema:inLanguage en
    9 schema:isAccessibleForFree false
    10 schema:issn 2364-415X
    11 2364-4168
    12 schema:license Hybrid (Open Choice)
    13 schema:name International Journal of Data Science and Analytics
    14 schema:productId N49a8a8b10a154d40aeb95c1d850901d9
    15 N5dbe1bb0046f4e838597d639a49845ef
    16 N72c910baec594a98b0528e7ca5dc0f21
    17 schema:publisher N5c2e5aabf7194aebbc530619dfd718d4
    18 schema:publisherImprint Springer
    19 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1156617
    20 schema:sdDatePublished 2019-03-18T11:05
    21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    22 schema:sdPublisher N3cfd445b22d4446989c6abee32c95a5e
    23 schema:startYear 2016
    24 schema:url http://link.springer.com/journal/41060
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset journals
    27 rdf:type schema:Periodical
    28 N3cfd445b22d4446989c6abee32c95a5e schema:name Springer Nature - SN SciGraph project
    29 rdf:type schema:Organization
    30 N3d5e17cf142241e38132b03a0e5c339d rdf:first Ned3ff1f7c70a4424a184150a653ee3af
    31 rdf:rest rdf:nil
    32 N49a8a8b10a154d40aeb95c1d850901d9 schema:name springer_id
    33 schema:value 41060
    34 rdf:type schema:PropertyValue
    35 N5c2e5aabf7194aebbc530619dfd718d4 schema:name Springer International Publishing
    36 rdf:type schema:Organization
    37 N5dbe1bb0046f4e838597d639a49845ef schema:name dimensions_id
    38 schema:value 156617
    39 rdf:type schema:PropertyValue
    40 N72c910baec594a98b0528e7ca5dc0f21 schema:name nlm_unique_id
    41 schema:value 101697185
    42 rdf:type schema:PropertyValue
    43 Ned3ff1f7c70a4424a184150a653ee3af schema:familyName Cao
    44 schema:givenName Longbing
    45 rdf:type schema:Person
    46 sg:ontologies/product-market-codes/522030 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    47 schema:name Business Information Systems
    48 rdf:type schema:DefinedTerm
    49 sg:ontologies/product-market-codes/I18024 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    50 schema:name Database Management
    51 rdf:type schema:DefinedTerm
    52 sg:ontologies/product-market-codes/I18030 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    53 schema:name Data Mining and Knowledge Discovery
    54 rdf:type schema:DefinedTerm
    55 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    56 schema:name Artificial Intelligence
    57 rdf:type schema:DefinedTerm
    58 sg:ontologies/product-market-codes/I23050 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    59 schema:name Computational Biology/Bioinformatics
    60 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...