International Journal of Machine Learning and Cybernetics View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

N/A

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/13042

Recent publications latest 20 shown

  • 2019-04-08 Building robust models for small data containing nominal inputs and continuous outputs based on possibility distributions
  • 2019-04-04 Attribute reduction via local conditional entropy
  • 2019-04 User-centered recommendation using US-ELM based on dynamic graph model in E-commerce
  • 2019-04 Nonsmooth exponential synchronization of coupled neural networks with delays: new switching design
  • 2019-04 Multi-criteria decision making based architecture selection for single-hidden layer feedforward neural networks
  • 2019-04 An experimental study on symbolic extreme learning machine
  • 2019-04 Neighborhood attribute reduction: a multi-criterion approach
  • 2019-04 An efficient and fast algorithm for community detection based on node role analysis
  • 2019-04 A term correlation based semi-supervised microblog clustering with dual constraints
  • 2019-04 Unsupervised feature selection based on self-representation sparse regression and local similarity preserving
  • 2019-04 Two-stage pruning method for gram-based categorical sequence clustering
  • 2019-04 H∞ state estimation for discrete-time stochastic memristive BAM neural networks with mixed time-delays
  • 2019-04 The probabilistic ordered weighted continuous OWA operator and its application in group decision making
  • 2019-04 Multigranulation rough set model in hesitant fuzzy information systems and its application in person-job fit
  • 2019-04 Hesitant interval neutrosophic linguistic set and its application in multiple attribute decision making
  • 2019-04 Global exponential stability of uncertain memristor-based recurrent neural networks with mixed time delays
  • 2019-03-18 Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  • 2019-03-15 A hybrid method for increasing the speed of SVM training using belief function theory and boundary region
  • 2019-03-15 Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning
  • 2019-03-15 Accelerating improved twin support vector machine with safe screening rule
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T11014", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computational Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T19000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Control, Robotics, Mechatronics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/P33000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Complex Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/L15010", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Systems Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I2203X", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Pattern Recognition", 
            "type": "DefinedTerm"
          }
        ], 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.108", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.7", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2017", 
            "ratingValue": "2.692", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.699", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.110", 
            "type": "Rating"
          }
        ], 
        "description": "

    Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.

    The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.

    Key research areas to be covered by the journal include:

    • Machine Learning for modeling interactions between systems
    • Pattern Recognition technology to support\u00a0 discovery of system-environment interaction
    • Control of system-environment interactions
    • Biochemical interaction in biological and biologically-inspired systems
    • Learning for improvement of communication schemes between systems\u00a0
    ", "editor": [ { "familyName": "Wang", "givenName": "Xi-Zhao", "type": "Person" } ], "id": "sg:journal.1136696", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "1868-8071", "1868-808X" ], "license": "Hybrid (Open Choice)", "name": "International Journal of Machine Learning and Cybernetics", "productId": [ { "name": "scopus_id", "type": "PropertyValue", "value": [ "19700177336" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "125217" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "13042" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "477570" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "136696" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "type": "Periodical", "url": "http://link.springer.com/journal/13042" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1136696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1136696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1136696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1136696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      20 PREDICATES      36 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1136696 schema:about sg:ontologies/product-market-codes/I21000
    2 sg:ontologies/product-market-codes/I2203X
    3 sg:ontologies/product-market-codes/L15010
    4 sg:ontologies/product-market-codes/P33000
    5 sg:ontologies/product-market-codes/T11014
    6 sg:ontologies/product-market-codes/T19000
    7 schema:contentRating N6f9c8b55c8ad476a9a8a9c51859014f3
    8 N9a58b155400e4b64b0ad7bfdd9415114
    9 Nb94376a7dc0144f2b5a02d4c612765fb
    10 Ne78dfb9f262c48a7a6a6a7459329ae10
    11 Nf60c2d5fa07541e1b50d4cf810ea352d
    12 schema:description <p>Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. </p><p/><p>The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. </p><p/><p>Key research areas to be covered by the journal include:</p><ul><p/><li>Machine Learning for modeling interactions between systems</li><li>Pattern Recognition technology to support  discovery of system-environment interaction</li><li>Control of system-environment interactions </li><li>Biochemical interaction in biological and biologically-inspired systems</li><li>Learning for improvement of communication schemes between systems  </li><p/></ul>
    13 schema:editor N6e37829cfb3549bc852338ae850a3bb5
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:issn 1868-8071
    17 1868-808X
    18 schema:license Hybrid (Open Choice)
    19 schema:name International Journal of Machine Learning and Cybernetics
    20 schema:productId N1c5600cf6cae45e49c41425720123c81
    21 N33a0231b74334cacb5fcece2bb9223a2
    22 N46ba7c22da0a414bafa4eb95307519ae
    23 N5c3fb9523f7f4d9aa11bef8a97c58ac0
    24 N60a79296eef543c59eba42a06610c6ff
    25 N6946f233eab848b4b8cc3ba8197397a1
    26 schema:publisher N13487aa887184b1d8009385ecd2c28b7
    27 schema:publisherImprint Springer
    28 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696
    29 schema:sdDatePublished 2019-03-18T11:05
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nb9edbae322354486932d6e468db7073a
    32 schema:url http://link.springer.com/journal/13042
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset journals
    35 rdf:type schema:Periodical
    36 N118f261d75874bb18e04efda2a55d555 rdf:first snip
    37 rdf:rest rdf:nil
    38 N13487aa887184b1d8009385ecd2c28b7 schema:name Springer Berlin Heidelberg
    39 rdf:type schema:Organization
    40 N14b01e23588a445e9382cce8f492a50f rdf:first impact_factor_wos
    41 rdf:rest rdf:nil
    42 N1c5600cf6cae45e49c41425720123c81 schema:name wos_id
    43 schema:value 1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
    44 rdf:type schema:PropertyValue
    45 N33a0231b74334cacb5fcece2bb9223a2 schema:name dimensions_id
    46 schema:value 136696
    47 rdf:type schema:PropertyValue
    48 N46ba7c22da0a414bafa4eb95307519ae schema:name springer_id
    49 schema:value 13042
    50 rdf:type schema:PropertyValue
    51 N4e43bbbfb7844daca6b2cd80166dc5af rdf:first impact_factor_wos
    52 rdf:rest rdf:nil
    53 N5c3fb9523f7f4d9aa11bef8a97c58ac0 schema:name era_ids_id
    54 schema:value 125217
    55 rdf:type schema:PropertyValue
    56 N60a79296eef543c59eba42a06610c6ff schema:name nsd_ids_id
    57 schema:value 477570
    58 rdf:type schema:PropertyValue
    59 N6946f233eab848b4b8cc3ba8197397a1 schema:name scopus_id
    60 schema:value 19700177336
    61 rdf:type schema:PropertyValue
    62 N6e37829cfb3549bc852338ae850a3bb5 rdf:first N7ad18c3b401d4f418b6b62803fc5709c
    63 rdf:rest rdf:nil
    64 N6f9c8b55c8ad476a9a8a9c51859014f3 schema:author N4e43bbbfb7844daca6b2cd80166dc5af
    65 schema:dateCreated 2017
    66 schema:ratingValue 2.692
    67 rdf:type schema:Rating
    68 N7ad18c3b401d4f418b6b62803fc5709c schema:familyName Wang
    69 schema:givenName Xi-Zhao
    70 rdf:type schema:Person
    71 N8b193b7ec5144705a7a80cbbb3bee3ee rdf:first sjr
    72 rdf:rest rdf:nil
    73 N9a58b155400e4b64b0ad7bfdd9415114 schema:author N118f261d75874bb18e04efda2a55d555
    74 schema:ratingValue 1.108
    75 rdf:type schema:Rating
    76 Nb94376a7dc0144f2b5a02d4c612765fb schema:author N14b01e23588a445e9382cce8f492a50f
    77 schema:dateCreated 2016
    78 schema:ratingValue 1.699
    79 rdf:type schema:Rating
    80 Nb9edbae322354486932d6e468db7073a schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 Ne78dfb9f262c48a7a6a6a7459329ae10 schema:author N8b193b7ec5144705a7a80cbbb3bee3ee
    83 schema:ratingValue 0.7
    84 rdf:type schema:Rating
    85 Nf60c2d5fa07541e1b50d4cf810ea352d schema:author Nfe0af91b41f2488ba43b75b7c56d8d5e
    86 schema:dateCreated 2015
    87 schema:ratingValue 1.110
    88 rdf:type schema:Rating
    89 Nfe0af91b41f2488ba43b75b7c56d8d5e rdf:first impact_factor_wos
    90 rdf:rest rdf:nil
    91 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    92 schema:name Artificial Intelligence
    93 rdf:type schema:DefinedTerm
    94 sg:ontologies/product-market-codes/I2203X schema:inDefinedTermSet sg:ontologies/product-market-codes/
    95 schema:name Pattern Recognition
    96 rdf:type schema:DefinedTerm
    97 sg:ontologies/product-market-codes/L15010 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    98 schema:name Systems Biology
    99 rdf:type schema:DefinedTerm
    100 sg:ontologies/product-market-codes/P33000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    101 schema:name Complex Systems
    102 rdf:type schema:DefinedTerm
    103 sg:ontologies/product-market-codes/T11014 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    104 schema:name Computational Intelligence
    105 rdf:type schema:DefinedTerm
    106 sg:ontologies/product-market-codes/T19000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    107 schema:name Control, Robotics, Mechatronics
    108 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...