International Journal of Machine Learning and Cybernetics View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

N/A

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/13042

Recent publications latest 20 shown

  • 2019-04-08 Building robust models for small data containing nominal inputs and continuous outputs based on possibility distributions
  • 2019-04 An efficient and fast algorithm for community detection based on node role analysis
  • 2019-04 An experimental study on symbolic extreme learning machine
  • 2019-04 Neighborhood attribute reduction: a multi-criterion approach
  • 2019-04 A term correlation based semi-supervised microblog clustering with dual constraints
  • 2019-03-18 Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  • 2019-03-15 Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning
  • 2019-03-15 Accelerating improved twin support vector machine with safe screening rule
  • 2019-03 Prioritized induced probabilistic operator and its application in group decision making
  • 2019-03 A discriminant binarization transform using genetic algorithm and error-correcting output code for face template protection
  • 2019-03 An effective Bayesian network parameters learning algorithm for autonomous mission decision-making under scarce data
  • 2019-03 A two ensemble system to handle concept drifting data streams: recurring dynamic weighted majority
  • 2019-03 A modified nature inspired meta-heuristic whale optimization algorithm for solving 0–1 knapsack problem
  • 2019-02-23 Study of the polytope of the at-least predicate
  • 2019-02-15 Selective multi-descriptor fusion for face identification
  • 2019-02-02 Model tree pruning
  • 2019-02 Semi-supervised rough fuzzy Laplacian Eigenmaps for dimensionality reduction
  • 2019-02 Colour face recognition using fuzzy quaternion-based discriminant analysis
  • 2019-02 Resident activity recognition based on binary infrared sensors and soft computing
  • 2019-01-28 A novel decomposition-ensemble approach to crude oil price forecasting with evolution clustering and combined model
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T11014", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computational Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T19000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Control, Robotics, Mechatronics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/P33000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Complex Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/L15010", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Systems Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I2203X", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Pattern Recognition", 
            "type": "DefinedTerm"
          }
        ], 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.108", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.7", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2017", 
            "ratingValue": "2.692", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.699", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.110", 
            "type": "Rating"
          }
        ], 
        "description": "

    Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.

    The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.

    Key research areas to be covered by the journal include:

    • Machine Learning for modeling interactions between systems
    • Pattern Recognition technology to support\u00a0 discovery of system-environment interaction
    • Control of system-environment interactions
    • Biochemical interaction in biological and biologically-inspired systems
    • Learning for improvement of communication schemes between systems\u00a0
    ", "editor": [ { "familyName": "Wang", "givenName": "Xi-Zhao", "type": "Person" } ], "id": "sg:journal.1136696", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "1868-8071", "1868-808X" ], "license": "Hybrid (Open Choice)", "name": "International Journal of Machine Learning and Cybernetics", "productId": [ { "name": "scopus_id", "type": "PropertyValue", "value": [ "19700177336" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "125217" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "13042" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "477570" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "136696" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "type": "Periodical", "url": "http://link.springer.com/journal/13042" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1136696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1136696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1136696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1136696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      20 PREDICATES      36 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1136696 schema:about sg:ontologies/product-market-codes/I21000
    2 sg:ontologies/product-market-codes/I2203X
    3 sg:ontologies/product-market-codes/L15010
    4 sg:ontologies/product-market-codes/P33000
    5 sg:ontologies/product-market-codes/T11014
    6 sg:ontologies/product-market-codes/T19000
    7 schema:contentRating N067b41aca3ee4e07976026fa54b61300
    8 N36399a47578b46278157c21dbf1301a1
    9 N4b7020117a874545b94231f1c97c5e58
    10 N4d4c637ba87e4bd387e5658c53fd037e
    11 Nb054ca1a71fa46929533a27ef9708847
    12 schema:description <p>Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. </p><p/><p>The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. </p><p/><p>Key research areas to be covered by the journal include:</p><ul><p/><li>Machine Learning for modeling interactions between systems</li><li>Pattern Recognition technology to support  discovery of system-environment interaction</li><li>Control of system-environment interactions </li><li>Biochemical interaction in biological and biologically-inspired systems</li><li>Learning for improvement of communication schemes between systems  </li><p/></ul>
    13 schema:editor Nf8f5a448260f4481817192addd41d034
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:issn 1868-8071
    17 1868-808X
    18 schema:license Hybrid (Open Choice)
    19 schema:name International Journal of Machine Learning and Cybernetics
    20 schema:productId N17bd23c9055a4d07b8bb52d347ef7db1
    21 N1cd175df067e4d7cae9db605f17753ee
    22 N3386c13f97a64c2dab40a890538081c2
    23 N34a075969ecb4f74a0116f549bf69f11
    24 N7e7e6a81ceb04e62b86e8a56320604b0
    25 Ndccd68e0309c4b389641c9a60d3c4c6a
    26 schema:publisher N2902388622fd44eba8edff1a508a41db
    27 schema:publisherImprint Springer
    28 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696
    29 schema:sdDatePublished 2019-03-18T11:05
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nb90d8e8fa528463890fb6bb70234709a
    32 schema:url http://link.springer.com/journal/13042
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset journals
    35 rdf:type schema:Periodical
    36 N067b41aca3ee4e07976026fa54b61300 schema:author Nab4a2f2552f1410e9fd882b83f6a728a
    37 schema:ratingValue 1.108
    38 rdf:type schema:Rating
    39 N17bd23c9055a4d07b8bb52d347ef7db1 schema:name springer_id
    40 schema:value 13042
    41 rdf:type schema:PropertyValue
    42 N1cd175df067e4d7cae9db605f17753ee schema:name dimensions_id
    43 schema:value 136696
    44 rdf:type schema:PropertyValue
    45 N2902388622fd44eba8edff1a508a41db schema:name Springer Berlin Heidelberg
    46 rdf:type schema:Organization
    47 N3386c13f97a64c2dab40a890538081c2 schema:name era_ids_id
    48 schema:value 125217
    49 rdf:type schema:PropertyValue
    50 N34a075969ecb4f74a0116f549bf69f11 schema:name scopus_id
    51 schema:value 19700177336
    52 rdf:type schema:PropertyValue
    53 N36399a47578b46278157c21dbf1301a1 schema:author Nd1e19e3b2a284d6b9fea8606a41d7c2a
    54 schema:ratingValue 0.7
    55 rdf:type schema:Rating
    56 N4b7020117a874545b94231f1c97c5e58 schema:author N56073a6169c343fe8a48be4347067849
    57 schema:dateCreated 2015
    58 schema:ratingValue 1.110
    59 rdf:type schema:Rating
    60 N4d4c637ba87e4bd387e5658c53fd037e schema:author Nba7319c9429d4e00b061b8e1164eef61
    61 schema:dateCreated 2016
    62 schema:ratingValue 1.699
    63 rdf:type schema:Rating
    64 N56073a6169c343fe8a48be4347067849 rdf:first impact_factor_wos
    65 rdf:rest rdf:nil
    66 N6515b56afa164ce4b06ad567321a85cc schema:familyName Wang
    67 schema:givenName Xi-Zhao
    68 rdf:type schema:Person
    69 N7e7e6a81ceb04e62b86e8a56320604b0 schema:name nsd_ids_id
    70 schema:value 477570
    71 rdf:type schema:PropertyValue
    72 Nab4a2f2552f1410e9fd882b83f6a728a rdf:first snip
    73 rdf:rest rdf:nil
    74 Nb054ca1a71fa46929533a27ef9708847 schema:author Nb569bc6fb94f473d952ddf1c2f5c3bb1
    75 schema:dateCreated 2017
    76 schema:ratingValue 2.692
    77 rdf:type schema:Rating
    78 Nb569bc6fb94f473d952ddf1c2f5c3bb1 rdf:first impact_factor_wos
    79 rdf:rest rdf:nil
    80 Nb90d8e8fa528463890fb6bb70234709a schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 Nba7319c9429d4e00b061b8e1164eef61 rdf:first impact_factor_wos
    83 rdf:rest rdf:nil
    84 Nd1e19e3b2a284d6b9fea8606a41d7c2a rdf:first sjr
    85 rdf:rest rdf:nil
    86 Ndccd68e0309c4b389641c9a60d3c4c6a schema:name wos_id
    87 schema:value 1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
    88 rdf:type schema:PropertyValue
    89 Nf8f5a448260f4481817192addd41d034 rdf:first N6515b56afa164ce4b06ad567321a85cc
    90 rdf:rest rdf:nil
    91 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    92 schema:name Artificial Intelligence
    93 rdf:type schema:DefinedTerm
    94 sg:ontologies/product-market-codes/I2203X schema:inDefinedTermSet sg:ontologies/product-market-codes/
    95 schema:name Pattern Recognition
    96 rdf:type schema:DefinedTerm
    97 sg:ontologies/product-market-codes/L15010 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    98 schema:name Systems Biology
    99 rdf:type schema:DefinedTerm
    100 sg:ontologies/product-market-codes/P33000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    101 schema:name Complex Systems
    102 rdf:type schema:DefinedTerm
    103 sg:ontologies/product-market-codes/T11014 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    104 schema:name Computational Intelligence
    105 rdf:type schema:DefinedTerm
    106 sg:ontologies/product-market-codes/T19000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    107 schema:name Control, Robotics, Mechatronics
    108 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...