International Journal of Machine Learning and Cybernetics View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

N/A

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/13042

Recent publications latest 20 shown

  • 2019-04-08 Building robust models for small data containing nominal inputs and continuous outputs based on possibility distributions
  • 2019-04-04 Attribute reduction via local conditional entropy
  • 2019-04 Nonsmooth exponential synchronization of coupled neural networks with delays: new switching design
  • 2019-04 Multi-criteria decision making based architecture selection for single-hidden layer feedforward neural networks
  • 2019-04 User-centered recommendation using US-ELM based on dynamic graph model in E-commerce
  • 2019-04 An efficient and fast algorithm for community detection based on node role analysis
  • 2019-04 An experimental study on symbolic extreme learning machine
  • 2019-04 Neighborhood attribute reduction: a multi-criterion approach
  • 2019-04 A term correlation based semi-supervised microblog clustering with dual constraints
  • 2019-04 Unsupervised feature selection based on self-representation sparse regression and local similarity preserving
  • 2019-04 Two-stage pruning method for gram-based categorical sequence clustering
  • 2019-04 Global exponential stability of uncertain memristor-based recurrent neural networks with mixed time delays
  • 2019-04 The probabilistic ordered weighted continuous OWA operator and its application in group decision making
  • 2019-04 H∞ state estimation for discrete-time stochastic memristive BAM neural networks with mixed time-delays
  • 2019-04 Multigranulation rough set model in hesitant fuzzy information systems and its application in person-job fit
  • 2019-04 Hesitant interval neutrosophic linguistic set and its application in multiple attribute decision making
  • 2019-03-18 Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  • 2019-03-15 A hybrid method for increasing the speed of SVM training using belief function theory and boundary region
  • 2019-03-15 Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning
  • 2019-03-15 Accelerating improved twin support vector machine with safe screening rule
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T11014", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computational Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T19000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Control, Robotics, Mechatronics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/P33000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Complex Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/L15010", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Systems Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I2203X", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Pattern Recognition", 
            "type": "DefinedTerm"
          }
        ], 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.108", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.7", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2017", 
            "ratingValue": "2.692", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.699", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.110", 
            "type": "Rating"
          }
        ], 
        "description": "

    Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.

    The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.

    Key research areas to be covered by the journal include:

    • Machine Learning for modeling interactions between systems
    • Pattern Recognition technology to support\u00a0 discovery of system-environment interaction
    • Control of system-environment interactions
    • Biochemical interaction in biological and biologically-inspired systems
    • Learning for improvement of communication schemes between systems\u00a0
    ", "editor": [ { "familyName": "Wang", "givenName": "Xi-Zhao", "type": "Person" } ], "id": "sg:journal.1136696", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "1868-8071", "1868-808X" ], "license": "Hybrid (Open Choice)", "name": "International Journal of Machine Learning and Cybernetics", "productId": [ { "name": "scopus_id", "type": "PropertyValue", "value": [ "19700177336" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "125217" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "13042" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "477570" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "136696" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "type": "Periodical", "url": "http://link.springer.com/journal/13042" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1136696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1136696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1136696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1136696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      20 PREDICATES      36 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1136696 schema:about sg:ontologies/product-market-codes/I21000
    2 sg:ontologies/product-market-codes/I2203X
    3 sg:ontologies/product-market-codes/L15010
    4 sg:ontologies/product-market-codes/P33000
    5 sg:ontologies/product-market-codes/T11014
    6 sg:ontologies/product-market-codes/T19000
    7 schema:contentRating N63f8e400326a4984bcb768b2e6870a30
    8 N823ec725387945108c7db5e0057d9dbc
    9 Nd1d2c8ef36d243e192d96beb504bc981
    10 Nd96116c27fae4a83b9e0c2afe7118bbc
    11 Nddb2baaf59de48fe9ca4030ee2310f7d
    12 schema:description <p>Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. </p><p/><p>The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. </p><p/><p>Key research areas to be covered by the journal include:</p><ul><p/><li>Machine Learning for modeling interactions between systems</li><li>Pattern Recognition technology to support  discovery of system-environment interaction</li><li>Control of system-environment interactions </li><li>Biochemical interaction in biological and biologically-inspired systems</li><li>Learning for improvement of communication schemes between systems  </li><p/></ul>
    13 schema:editor N43bd7f851e0f41659f3fda016304798a
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:issn 1868-8071
    17 1868-808X
    18 schema:license Hybrid (Open Choice)
    19 schema:name International Journal of Machine Learning and Cybernetics
    20 schema:productId N1d7a8b8c988749a08848b22274a34162
    21 N1fbced25866848da9db844ee43d8c4b7
    22 N2b9a75bb8fe249c09c9ef4d3df58b4b1
    23 Na60b910bc70046889f90e3eadb2a1375
    24 Nb4cca60664104aabb41b1a0890d7fa66
    25 Nd1a5a0225a884a93a2cb8005ec2ed590
    26 schema:publisher Nfc5f1a105c674fa8928f1486133eff41
    27 schema:publisherImprint Springer
    28 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696
    29 schema:sdDatePublished 2019-03-18T11:05
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Na330e262c9ce4b9d8bf72319b26daa6d
    32 schema:url http://link.springer.com/journal/13042
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset journals
    35 rdf:type schema:Periodical
    36 N1d7a8b8c988749a08848b22274a34162 schema:name nsd_ids_id
    37 schema:value 477570
    38 rdf:type schema:PropertyValue
    39 N1fbced25866848da9db844ee43d8c4b7 schema:name wos_id
    40 schema:value 1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
    41 rdf:type schema:PropertyValue
    42 N2b9a75bb8fe249c09c9ef4d3df58b4b1 schema:name springer_id
    43 schema:value 13042
    44 rdf:type schema:PropertyValue
    45 N432464860ad24328964f2601354f6af4 rdf:first sjr
    46 rdf:rest rdf:nil
    47 N43bd7f851e0f41659f3fda016304798a rdf:first Neb850b2674964e22b9dfbe074eeef57d
    48 rdf:rest rdf:nil
    49 N63f8e400326a4984bcb768b2e6870a30 schema:author Nc4fcc1d1951d4bbb86001ddcea1c90ff
    50 schema:ratingValue 1.108
    51 rdf:type schema:Rating
    52 N74829708b7544406b733311394e9e1c7 rdf:first impact_factor_wos
    53 rdf:rest rdf:nil
    54 N804c2c7560d5440693ee88175cc9174b rdf:first impact_factor_wos
    55 rdf:rest rdf:nil
    56 N823ec725387945108c7db5e0057d9dbc schema:author N804c2c7560d5440693ee88175cc9174b
    57 schema:dateCreated 2016
    58 schema:ratingValue 1.699
    59 rdf:type schema:Rating
    60 Na2a33e67f6c24c71bd3c1202ab303527 rdf:first impact_factor_wos
    61 rdf:rest rdf:nil
    62 Na330e262c9ce4b9d8bf72319b26daa6d schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 Na60b910bc70046889f90e3eadb2a1375 schema:name scopus_id
    65 schema:value 19700177336
    66 rdf:type schema:PropertyValue
    67 Nb4cca60664104aabb41b1a0890d7fa66 schema:name era_ids_id
    68 schema:value 125217
    69 rdf:type schema:PropertyValue
    70 Nc4fcc1d1951d4bbb86001ddcea1c90ff rdf:first snip
    71 rdf:rest rdf:nil
    72 Nd1a5a0225a884a93a2cb8005ec2ed590 schema:name dimensions_id
    73 schema:value 136696
    74 rdf:type schema:PropertyValue
    75 Nd1d2c8ef36d243e192d96beb504bc981 schema:author N432464860ad24328964f2601354f6af4
    76 schema:ratingValue 0.7
    77 rdf:type schema:Rating
    78 Nd96116c27fae4a83b9e0c2afe7118bbc schema:author Na2a33e67f6c24c71bd3c1202ab303527
    79 schema:dateCreated 2017
    80 schema:ratingValue 2.692
    81 rdf:type schema:Rating
    82 Nddb2baaf59de48fe9ca4030ee2310f7d schema:author N74829708b7544406b733311394e9e1c7
    83 schema:dateCreated 2015
    84 schema:ratingValue 1.110
    85 rdf:type schema:Rating
    86 Neb850b2674964e22b9dfbe074eeef57d schema:familyName Wang
    87 schema:givenName Xi-Zhao
    88 rdf:type schema:Person
    89 Nfc5f1a105c674fa8928f1486133eff41 schema:name Springer Berlin Heidelberg
    90 rdf:type schema:Organization
    91 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    92 schema:name Artificial Intelligence
    93 rdf:type schema:DefinedTerm
    94 sg:ontologies/product-market-codes/I2203X schema:inDefinedTermSet sg:ontologies/product-market-codes/
    95 schema:name Pattern Recognition
    96 rdf:type schema:DefinedTerm
    97 sg:ontologies/product-market-codes/L15010 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    98 schema:name Systems Biology
    99 rdf:type schema:DefinedTerm
    100 sg:ontologies/product-market-codes/P33000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    101 schema:name Complex Systems
    102 rdf:type schema:DefinedTerm
    103 sg:ontologies/product-market-codes/T11014 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    104 schema:name Computational Intelligence
    105 rdf:type schema:DefinedTerm
    106 sg:ontologies/product-market-codes/T19000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    107 schema:name Control, Robotics, Mechatronics
    108 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...