International Journal of Machine Learning and Cybernetics View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

N/A

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/13042

Recent publications latest 20 shown

  • 2019-04-08 Building robust models for small data containing nominal inputs and continuous outputs based on possibility distributions
  • 2019-04-04 Attribute reduction via local conditional entropy
  • 2019-04 User-centered recommendation using US-ELM based on dynamic graph model in E-commerce
  • 2019-04 Nonsmooth exponential synchronization of coupled neural networks with delays: new switching design
  • 2019-04 Multi-criteria decision making based architecture selection for single-hidden layer feedforward neural networks
  • 2019-04 An experimental study on symbolic extreme learning machine
  • 2019-04 Neighborhood attribute reduction: a multi-criterion approach
  • 2019-04 An efficient and fast algorithm for community detection based on node role analysis
  • 2019-04 A term correlation based semi-supervised microblog clustering with dual constraints
  • 2019-04 Unsupervised feature selection based on self-representation sparse regression and local similarity preserving
  • 2019-04 Two-stage pruning method for gram-based categorical sequence clustering
  • 2019-04 Global exponential stability of uncertain memristor-based recurrent neural networks with mixed time delays
  • 2019-04 The probabilistic ordered weighted continuous OWA operator and its application in group decision making
  • 2019-04 H∞ state estimation for discrete-time stochastic memristive BAM neural networks with mixed time-delays
  • 2019-04 Multigranulation rough set model in hesitant fuzzy information systems and its application in person-job fit
  • 2019-04 Hesitant interval neutrosophic linguistic set and its application in multiple attribute decision making
  • 2019-03-18 Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  • 2019-03-15 A hybrid method for increasing the speed of SVM training using belief function theory and boundary region
  • 2019-03-15 Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning
  • 2019-03-15 Accelerating improved twin support vector machine with safe screening rule
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T11014", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computational Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T19000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Control, Robotics, Mechatronics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/P33000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Complex Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/L15010", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Systems Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I2203X", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Pattern Recognition", 
            "type": "DefinedTerm"
          }
        ], 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.108", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.7", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2017", 
            "ratingValue": "2.692", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.699", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.110", 
            "type": "Rating"
          }
        ], 
        "description": "

    Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.

    The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.

    Key research areas to be covered by the journal include:

    • Machine Learning for modeling interactions between systems
    • Pattern Recognition technology to support\u00a0 discovery of system-environment interaction
    • Control of system-environment interactions
    • Biochemical interaction in biological and biologically-inspired systems
    • Learning for improvement of communication schemes between systems\u00a0
    ", "editor": [ { "familyName": "Wang", "givenName": "Xi-Zhao", "type": "Person" } ], "id": "sg:journal.1136696", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "1868-8071", "1868-808X" ], "license": "Hybrid (Open Choice)", "name": "International Journal of Machine Learning and Cybernetics", "productId": [ { "name": "scopus_id", "type": "PropertyValue", "value": [ "19700177336" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "125217" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "13042" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "477570" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "136696" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "type": "Periodical", "url": "http://link.springer.com/journal/13042" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1136696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1136696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1136696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1136696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      20 PREDICATES      36 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1136696 schema:about sg:ontologies/product-market-codes/I21000
    2 sg:ontologies/product-market-codes/I2203X
    3 sg:ontologies/product-market-codes/L15010
    4 sg:ontologies/product-market-codes/P33000
    5 sg:ontologies/product-market-codes/T11014
    6 sg:ontologies/product-market-codes/T19000
    7 schema:contentRating N81fa28913bb34d48b14d327aad9e05bc
    8 N93a84af01a6f4e1aacac067ee45e5654
    9 Na57dba95b07c4f419f75b2a9b15d3cfa
    10 Nb4547ffd14c84def9d08286c05512252
    11 Ne6e3bf4d3e2c4d389e0b021e707a9bd3
    12 schema:description <p>Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. </p><p/><p>The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. </p><p/><p>Key research areas to be covered by the journal include:</p><ul><p/><li>Machine Learning for modeling interactions between systems</li><li>Pattern Recognition technology to support  discovery of system-environment interaction</li><li>Control of system-environment interactions </li><li>Biochemical interaction in biological and biologically-inspired systems</li><li>Learning for improvement of communication schemes between systems  </li><p/></ul>
    13 schema:editor N7ad0de7412b0461391d508142ee0439e
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:issn 1868-8071
    17 1868-808X
    18 schema:license Hybrid (Open Choice)
    19 schema:name International Journal of Machine Learning and Cybernetics
    20 schema:productId N010bb77398ff466284fda30f4cc95d17
    21 N1248631d4f014abd95c25cff660ad393
    22 N30ab7d805f594dffb3cfa4a6c2f4153f
    23 N3d57ce2612be4228bf61739b657c601c
    24 Nb967cd8f87cd485aaeb05479e5af596b
    25 Nc97850337d9d4a0e8cb388b5f4957cf1
    26 schema:publisher N4ba2b6bd313d4e2bba95a46538c81a51
    27 schema:publisherImprint Springer
    28 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696
    29 schema:sdDatePublished 2019-03-18T11:05
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher N5663f5773cc0442da7704371751bf4c4
    32 schema:url http://link.springer.com/journal/13042
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset journals
    35 rdf:type schema:Periodical
    36 N010bb77398ff466284fda30f4cc95d17 schema:name springer_id
    37 schema:value 13042
    38 rdf:type schema:PropertyValue
    39 N076afd84a28f462298d200f11ed47906 schema:familyName Wang
    40 schema:givenName Xi-Zhao
    41 rdf:type schema:Person
    42 N1248631d4f014abd95c25cff660ad393 schema:name wos_id
    43 schema:value 1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
    44 rdf:type schema:PropertyValue
    45 N23d486dc701d4b7ea4d254107c561cb1 rdf:first impact_factor_wos
    46 rdf:rest rdf:nil
    47 N30ab7d805f594dffb3cfa4a6c2f4153f schema:name era_ids_id
    48 schema:value 125217
    49 rdf:type schema:PropertyValue
    50 N3d57ce2612be4228bf61739b657c601c schema:name dimensions_id
    51 schema:value 136696
    52 rdf:type schema:PropertyValue
    53 N41fec209d9e0434e8c94809f01b263d8 rdf:first impact_factor_wos
    54 rdf:rest rdf:nil
    55 N4ba2b6bd313d4e2bba95a46538c81a51 schema:name Springer Berlin Heidelberg
    56 rdf:type schema:Organization
    57 N5663f5773cc0442da7704371751bf4c4 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N79835736337e44758502c10363b244be rdf:first snip
    60 rdf:rest rdf:nil
    61 N7ad0de7412b0461391d508142ee0439e rdf:first N076afd84a28f462298d200f11ed47906
    62 rdf:rest rdf:nil
    63 N81fa28913bb34d48b14d327aad9e05bc schema:author Na0f70ad0a0194feebfa097414ae3be4f
    64 schema:dateCreated 2016
    65 schema:ratingValue 1.699
    66 rdf:type schema:Rating
    67 N93a84af01a6f4e1aacac067ee45e5654 schema:author N23d486dc701d4b7ea4d254107c561cb1
    68 schema:dateCreated 2017
    69 schema:ratingValue 2.692
    70 rdf:type schema:Rating
    71 Na0f70ad0a0194feebfa097414ae3be4f rdf:first impact_factor_wos
    72 rdf:rest rdf:nil
    73 Na57dba95b07c4f419f75b2a9b15d3cfa schema:author N79835736337e44758502c10363b244be
    74 schema:ratingValue 1.108
    75 rdf:type schema:Rating
    76 Nb4547ffd14c84def9d08286c05512252 schema:author Nd35c302d2fec44cca589399465cd8076
    77 schema:ratingValue 0.7
    78 rdf:type schema:Rating
    79 Nb967cd8f87cd485aaeb05479e5af596b schema:name scopus_id
    80 schema:value 19700177336
    81 rdf:type schema:PropertyValue
    82 Nc97850337d9d4a0e8cb388b5f4957cf1 schema:name nsd_ids_id
    83 schema:value 477570
    84 rdf:type schema:PropertyValue
    85 Nd35c302d2fec44cca589399465cd8076 rdf:first sjr
    86 rdf:rest rdf:nil
    87 Ne6e3bf4d3e2c4d389e0b021e707a9bd3 schema:author N41fec209d9e0434e8c94809f01b263d8
    88 schema:dateCreated 2015
    89 schema:ratingValue 1.110
    90 rdf:type schema:Rating
    91 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    92 schema:name Artificial Intelligence
    93 rdf:type schema:DefinedTerm
    94 sg:ontologies/product-market-codes/I2203X schema:inDefinedTermSet sg:ontologies/product-market-codes/
    95 schema:name Pattern Recognition
    96 rdf:type schema:DefinedTerm
    97 sg:ontologies/product-market-codes/L15010 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    98 schema:name Systems Biology
    99 rdf:type schema:DefinedTerm
    100 sg:ontologies/product-market-codes/P33000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    101 schema:name Complex Systems
    102 rdf:type schema:DefinedTerm
    103 sg:ontologies/product-market-codes/T11014 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    104 schema:name Computational Intelligence
    105 rdf:type schema:DefinedTerm
    106 sg:ontologies/product-market-codes/T19000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    107 schema:name Control, Robotics, Mechatronics
    108 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...