International Journal of Machine Learning and Cybernetics View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

N/A

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/13042

Recent publications latest 20 shown

  • 2019-04-08 Building robust models for small data containing nominal inputs and continuous outputs based on possibility distributions
  • 2019-04-04 Attribute reduction via local conditional entropy
  • 2019-04 Nonsmooth exponential synchronization of coupled neural networks with delays: new switching design
  • 2019-04 Multi-criteria decision making based architecture selection for single-hidden layer feedforward neural networks
  • 2019-04 User-centered recommendation using US-ELM based on dynamic graph model in E-commerce
  • 2019-04 An experimental study on symbolic extreme learning machine
  • 2019-04 Neighborhood attribute reduction: a multi-criterion approach
  • 2019-04 An efficient and fast algorithm for community detection based on node role analysis
  • 2019-04 A term correlation based semi-supervised microblog clustering with dual constraints
  • 2019-04 Unsupervised feature selection based on self-representation sparse regression and local similarity preserving
  • 2019-04 Two-stage pruning method for gram-based categorical sequence clustering
  • 2019-04 H∞ state estimation for discrete-time stochastic memristive BAM neural networks with mixed time-delays
  • 2019-04 The probabilistic ordered weighted continuous OWA operator and its application in group decision making
  • 2019-04 Multigranulation rough set model in hesitant fuzzy information systems and its application in person-job fit
  • 2019-04 Hesitant interval neutrosophic linguistic set and its application in multiple attribute decision making
  • 2019-04 Global exponential stability of uncertain memristor-based recurrent neural networks with mixed time delays
  • 2019-03-18 Multi-level features fusion and selection for human gait recognition: an optimized framework of Bayesian model and binomial distribution
  • 2019-03-15 A hybrid method for increasing the speed of SVM training using belief function theory and boundary region
  • 2019-03-15 Meticulous fuzzy convolution C means for optimized big data analytics: adaptation towards deep learning
  • 2019-03-15 Accelerating improved twin support vector machine with safe screening rule
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T11014", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computational Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T19000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Control, Robotics, Mechatronics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/P33000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Complex Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/L15010", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Systems Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I2203X", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Pattern Recognition", 
            "type": "DefinedTerm"
          }
        ], 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.108", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.7", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2017", 
            "ratingValue": "2.692", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.699", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.110", 
            "type": "Rating"
          }
        ], 
        "description": "

    Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data.

    The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC.

    Key research areas to be covered by the journal include:

    • Machine Learning for modeling interactions between systems
    • Pattern Recognition technology to support\u00a0 discovery of system-environment interaction
    • Control of system-environment interactions
    • Biochemical interaction in biological and biologically-inspired systems
    • Learning for improvement of communication schemes between systems\u00a0
    ", "editor": [ { "familyName": "Wang", "givenName": "Xi-Zhao", "type": "Person" } ], "id": "sg:journal.1136696", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "1868-8071", "1868-808X" ], "license": "Hybrid (Open Choice)", "name": "International Journal of Machine Learning and Cybernetics", "productId": [ { "name": "scopus_id", "type": "PropertyValue", "value": [ "19700177336" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "125217" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "13042" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "477570" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "136696" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "type": "Periodical", "url": "http://link.springer.com/journal/13042" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1136696'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1136696'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1136696'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1136696'


     

    This table displays all metadata directly associated to this object as RDF triples.

    108 TRIPLES      20 PREDICATES      36 URIs      26 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1136696 schema:about sg:ontologies/product-market-codes/I21000
    2 sg:ontologies/product-market-codes/I2203X
    3 sg:ontologies/product-market-codes/L15010
    4 sg:ontologies/product-market-codes/P33000
    5 sg:ontologies/product-market-codes/T11014
    6 sg:ontologies/product-market-codes/T19000
    7 schema:contentRating N505337418d5749f7b62532794fd63612
    8 N985cd912321b444a87cc5445098f09bc
    9 Nc27d8b04cf234361bea3c2f7922b2274
    10 Ncfb9574ec9904d6582e793c3168ae9bb
    11 Nfe3fb4d53bb64753b7d8754ae775d5fa
    12 schema:description <p>Cybernetics is concerned with describing complex interactions and interrelationships between systems which are omnipresent in our daily life. Machine Learning discovers fundamental functional relationships between variables and ensembles of variables in systems. The merging of the disciplines of Machine Learning and Cybernetics is aimed at the discovery of various forms of interaction between systems through diverse mechanisms of learning from data. </p><p/><p>The International Journal of Machine Learning and Cybernetics (IJMLC) focuses on the key research problems emerging at the junction of machine learning and cybernetics and serves as a broad forum for rapid dissemination of the latest advancements in the area. The emphasis of IJMLC is on the hybrid development of machine learning and cybernetics schemes inspired by different contributing disciplines such as engineering, mathematics, cognitive sciences, and applications. New ideas, design alternatives, implementations and case studies pertaining to all the aspects of machine learning and cybernetics fall within the scope of the IJMLC. </p><p/><p>Key research areas to be covered by the journal include:</p><ul><p/><li>Machine Learning for modeling interactions between systems</li><li>Pattern Recognition technology to support  discovery of system-environment interaction</li><li>Control of system-environment interactions </li><li>Biochemical interaction in biological and biologically-inspired systems</li><li>Learning for improvement of communication schemes between systems  </li><p/></ul>
    13 schema:editor Nfb51d0a5307446ecae95c68cc6faa66e
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:issn 1868-8071
    17 1868-808X
    18 schema:license Hybrid (Open Choice)
    19 schema:name International Journal of Machine Learning and Cybernetics
    20 schema:productId N27f7c1f1c8784b83a0f1d2bc66fb5aea
    21 N61e2a968df3743418679b8566ebaa96d
    22 N87391a90d09446358bf530fccc112901
    23 N9df5675af1794b869e6d789b8ac91f77
    24 Nbba55fb441744f68845406a61bef1dd2
    25 Ne95cf83ebf374768ac85c516f49dc110
    26 schema:publisher N9253d0ebac5046eb8740a00b9bc12108
    27 schema:publisherImprint Springer
    28 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136696
    29 schema:sdDatePublished 2019-03-18T11:05
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nb101497b621c4a9ca5b5b984ec957e0f
    32 schema:url http://link.springer.com/journal/13042
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset journals
    35 rdf:type schema:Periodical
    36 N27f7c1f1c8784b83a0f1d2bc66fb5aea schema:name scopus_id
    37 schema:value 19700177336
    38 rdf:type schema:PropertyValue
    39 N40a1523a94c04ee8a0f2e1c538785d7b rdf:first sjr
    40 rdf:rest rdf:nil
    41 N4685484c65e14f2281cd4f8e3ceb2932 rdf:first impact_factor_wos
    42 rdf:rest rdf:nil
    43 N505337418d5749f7b62532794fd63612 schema:author N573b315ff01948f58e073342140d8e29
    44 schema:ratingValue 1.108
    45 rdf:type schema:Rating
    46 N573b315ff01948f58e073342140d8e29 rdf:first snip
    47 rdf:rest rdf:nil
    48 N61e2a968df3743418679b8566ebaa96d schema:name wos_id
    49 schema:value 1868-8071/INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
    50 rdf:type schema:PropertyValue
    51 N7b47e7caef00417cb609258a183806a8 rdf:first impact_factor_wos
    52 rdf:rest rdf:nil
    53 N87391a90d09446358bf530fccc112901 schema:name dimensions_id
    54 schema:value 136696
    55 rdf:type schema:PropertyValue
    56 N9253d0ebac5046eb8740a00b9bc12108 schema:name Springer Berlin Heidelberg
    57 rdf:type schema:Organization
    58 N985cd912321b444a87cc5445098f09bc schema:author N7b47e7caef00417cb609258a183806a8
    59 schema:dateCreated 2015
    60 schema:ratingValue 1.110
    61 rdf:type schema:Rating
    62 N9df5675af1794b869e6d789b8ac91f77 schema:name nsd_ids_id
    63 schema:value 477570
    64 rdf:type schema:PropertyValue
    65 Nb101497b621c4a9ca5b5b984ec957e0f schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 Nbba55fb441744f68845406a61bef1dd2 schema:name springer_id
    68 schema:value 13042
    69 rdf:type schema:PropertyValue
    70 Nc1ba92a6291e4964a71c242085cef513 rdf:first impact_factor_wos
    71 rdf:rest rdf:nil
    72 Nc27d8b04cf234361bea3c2f7922b2274 schema:author N4685484c65e14f2281cd4f8e3ceb2932
    73 schema:dateCreated 2017
    74 schema:ratingValue 2.692
    75 rdf:type schema:Rating
    76 Ncfb9574ec9904d6582e793c3168ae9bb schema:author Nc1ba92a6291e4964a71c242085cef513
    77 schema:dateCreated 2016
    78 schema:ratingValue 1.699
    79 rdf:type schema:Rating
    80 Ne5694f5b8742437b9850b439e3c351fe schema:familyName Wang
    81 schema:givenName Xi-Zhao
    82 rdf:type schema:Person
    83 Ne95cf83ebf374768ac85c516f49dc110 schema:name era_ids_id
    84 schema:value 125217
    85 rdf:type schema:PropertyValue
    86 Nfb51d0a5307446ecae95c68cc6faa66e rdf:first Ne5694f5b8742437b9850b439e3c351fe
    87 rdf:rest rdf:nil
    88 Nfe3fb4d53bb64753b7d8754ae775d5fa schema:author N40a1523a94c04ee8a0f2e1c538785d7b
    89 schema:ratingValue 0.7
    90 rdf:type schema:Rating
    91 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    92 schema:name Artificial Intelligence
    93 rdf:type schema:DefinedTerm
    94 sg:ontologies/product-market-codes/I2203X schema:inDefinedTermSet sg:ontologies/product-market-codes/
    95 schema:name Pattern Recognition
    96 rdf:type schema:DefinedTerm
    97 sg:ontologies/product-market-codes/L15010 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    98 schema:name Systems Biology
    99 rdf:type schema:DefinedTerm
    100 sg:ontologies/product-market-codes/P33000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    101 schema:name Complex Systems
    102 rdf:type schema:DefinedTerm
    103 sg:ontologies/product-market-codes/T11014 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    104 schema:name Computational Intelligence
    105 rdf:type schema:DefinedTerm
    106 sg:ontologies/product-market-codes/T19000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    107 schema:name Control, Robotics, Mechatronics
    108 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...