Datenbank-Spektrum View Homepage


Ontology type: schema:Periodical     

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I18032", 
        "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
        "name": "Information Storage and Retrieval", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I18030", 
        "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
        "name": "Data Mining and Knowledge Discovery", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I18024", 
        "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
        "name": "Database Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I15009", 
        "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
        "name": "Data Structures and Information Theory", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/product-market-codes/522000", 
        "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
        "name": "IT in Business", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I13006", 
        "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
        "name": "Computer Systems Organization and Communication Networks", 
        "type": "DefinedTerm"
      }
    ], 
    "alternateName": "Zeitschrift f\u00fcr Datenbanktechnologien und Information Retrieval", 
    "description": "Datenbank-Spektrum ist das offizielle Organ der Fachgruppe Datenbanken und Information Retrieval der Gesellschaft f\u00fcr Informatik (GI) e.V. Die Zeitschrift widmet sich den Themen Datenbanken, Datenbankanwendungen und Information Retrieval. Sie vermittelt fundiertes Wissen \u00fcber die aktuellen Standards und Technologien, deren Einsatz und ihre kommerzielle Relevanz. 

Neben Grundlagenbeitr\u00e4gen, Tutorials, wissenschaftlichen Fachbeitr\u00e4gen, aktuellen Forschungsergebnissen finden sich in jeder Ausgabe auch Informationen \u00fcber die Aktivit\u00e4ten der Fachgruppen, zu Konferenzen\u00a0und Workshops und \u00fcber neue Produkte und B\u00fccher. Ein renommiertes Herausgebergremium aus Hochschule und Industrie gew\u00e4hrleistet die Qualit\u00e4t und fachliche Kompetenz der Beitr\u00e4ge.

\u00a0

K\u00fcnftige Schwerpunktthemen:

\u00a0\u00a0\u00a0

Data and Repeatability

What is common practice in most natural sciences has only recently entered the database field: Ensuring repeatability (or reproducibility) of experiments, in order to validate scientific results and enable experimental comparisons of methods. In our field, the ability to reproduce and repeat experiments has two main ingredients: First, the software or sufficient method description. Second, the data to run the experiments on. This special issue on data and repeatability places its focus on this second, arguably more challenging part.

Providing data for experimentation must overcome many obstacles. For instance, the data must be non-private and non-proprietary; for many types of experiments, data must be properly labeled or accompanied by a gold-standard; in many cases, data is \u201cmassaged\u201d before entering experiments; special properties of the data, such as distributions or size, must be known or even adaptable. Sometimes data is varied to fit specific needs of an experiment, i.e., through upsampling and augmentation. In addition, \u201cinput data\u201d for experiments may refer to many different things: from raw data to cleaned data, from sets of non-integrated CSV-files to a fully integrated relational database, etc.

We are calling for non-typical database contributions that report on

  • Experiences in handling data for scientific and industrial purposes
  • Experiences in handling data in data science/ML/AI Workflows
  • Efforts to create, evaluate or use data for benchmarking
  • Data preparation/cleaning, and data quality war stories
  • Data life cycle Management
  • Long-term data preservation and curation
  • Data hubs and repositories
  • Description of datasets of general interest and open data
  • Data and the law \u2013 legally managing data
  • Possible impacts on our publishing culture

    Submissions can range from single pages, for instance to introduce a dataset, to full-fledged scientific contributions, for instance an experimental analysis of data cleaning methods or war stories.

    Expected size of the paper: 8\u201310 pages, double-column (cf. the author guidelines at www.springer.com/13222). Contributions either in German or in English are welcome.

    Deadline for submissions: Feb. 1st, 2019

    Issue delivery: DASP-2-2019 (July 2019)

    Guest editors:

    Jens Dittrich, Universit\u00e4t des Saarlandes

    jens.dittrich@cs.uni-saarland.de

    Felix Naumann, Hasso Plattner Institut, Universit\u00e4t Potsdam

    Felix.Naumann@hpi.de

    Norbert Ritter, Universit\u00e4t Hamburg

    ritter@informatik.uni-hamburg.de

    \u00a0

    Best Workshop Papers of BTW 2019

    This special issue of the \u201cDatenbank-Spektrum\u201d is dedicated to the Best Papers of the Workshops running at the BTW 2019 at the University of Rostock. The selected Workshop contributions should be extended to match the format of regular DASP papers.

    Paper format: 8-10 pages, double-column

    Selection of the Best Papers by the Workshop chairs and the guest editor: April 15th, 2019

    Deadline for submissions: June 1st, 2019

    Issue delivery: DASP-3-2019 (November 2019)

    Guest editor:

    Theo H\u00e4rder, University of Kaiserslautern

    haerder@cs.uni-kl.de

    \u00a0

    \u00a0

    Trends in Information Retrieval Evaluation

    Evaluation is a central aspect in the research and development of information retrieval systems. In academia, the quantitative evaluation of such systems is mostly known under the term Cranfield paradigm. This research method has been established for more than 25 years in international evaluation campaigns such as the Text Retrieval Conference (TREC) or the Conference and Labs of the Evaluation Forum (CLEF). Meanwhile industrial research has taken a completely different approach. Many companies are able to access a large number of users and their interactions, which can be recorded and evaluated. These infrastructures allow alternative evaluations like large-scale A/B experiments or other online methods. In the last years, different approaches to go beyond TREC-style evaluations emerged to close the gap and to bring together academic and industrial evaluation.

    We are calling for articles that report on novel Evaluation efforts, like:

  • Living Labs
  • Evaluation as a service
  • Large-scale A/B tests
  • Interactive retrieval evaluation
  • Session-based evaluation
  • User-centered evaluation
  • Counterfactual evaluation
  • Novel evaluations in application domains such as cultural heritage, digital libraries, social media, expert search, health information, etc.
  • Other evaluations that go beyond TREC

    Expected size of the paper: 8\u201310 pages, double-column (cf. the author guidelines at www.springer.com/13222. Contributions either in German or in English are welcome.

    Deadline for submissions: Oct. 1st, 2019

    Issue delivery: DASP-1-2020 (March 2020)

    Guest editors:

    Philipp Schaer, Technische Hochschule K\u00f6ln

    philipp.schaer@th-koeln.de

    Klaus Berberich, Hochschule f\u00fcr Technik und Wirtschaft des Saarlandes

    klaus.berberich@htwsaar.de

  • ", "id": "sg:journal.1136415", "inLanguage": [ "de", "en" ], "isAccessibleForFree": false, "issn": [ "1618-2162", "1610-1995" ], "license": "Hybrid (Open Choice)", "name": "Datenbank-Spektrum", "productId": [ { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "483867" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "13222" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101718074" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "136415" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136415" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "startYear": "2001", "type": "Periodical", "url": "http://link.springer.com/journal/13222" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1136415'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1136415'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1136415'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1136415'


     

    This table displays all metadata directly associated to this object as RDF triples.

    64 TRIPLES      20 PREDICATES      31 URIs      21 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1136415 schema:about sg:ontologies/product-market-codes/522000
    2 sg:ontologies/product-market-codes/I13006
    3 sg:ontologies/product-market-codes/I15009
    4 sg:ontologies/product-market-codes/I18024
    5 sg:ontologies/product-market-codes/I18030
    6 sg:ontologies/product-market-codes/I18032
    7 schema:alternateName Zeitschrift für Datenbanktechnologien und Information Retrieval
    8 schema:description Datenbank-Spektrum ist das offizielle Organ der Fachgruppe Datenbanken und Information Retrieval der Gesellschaft für Informatik (GI) e.V. Die Zeitschrift widmet sich den Themen Datenbanken, Datenbankanwendungen und Information Retrieval. Sie vermittelt fundiertes Wissen über die aktuellen Standards und Technologien, deren Einsatz und ihre kommerzielle Relevanz. <p>Neben Grundlagenbeiträgen, Tutorials, wissenschaftlichen Fachbeiträgen, aktuellen Forschungsergebnissen finden sich in jeder Ausgabe auch Informationen über die Aktivitäten der Fachgruppen, zu Konferenzen und Workshops und über neue Produkte und Bücher. Ein renommiertes Herausgebergremium aus Hochschule und Industrie gewährleistet die Qualität und fachliche Kompetenz der Beiträge.</p><p>  </p><p/><p><b>Künftige Schwerpunktthemen:</b></p>    <p/><p><b>Data and Repeatability</b></p><p>What is common practice in most natural sciences has only recently entered the database field: Ensuring repeatability (or reproducibility) of experiments, in order to validate scientific results and enable experimental comparisons of methods. In our field, the ability to reproduce and repeat experiments has two main ingredients: First, the software or sufficient method description. Second, the data to run the experiments on. This special issue on data and repeatability places its focus on this second, arguably more challenging part.</p><p>Providing data for experimentation must overcome many obstacles. For instance, the data must be non-private and non-proprietary; for many types of experiments, data must be properly labeled or accompanied by a gold-standard; in many cases, data is “massaged” before entering experiments; special properties of the data, such as distributions or size, must be known or even adaptable. Sometimes data is varied to fit specific needs of an experiment, i.e., through upsampling and augmentation. In addition, “input data” for experiments may refer to many different things: from raw data to cleaned data, from sets of non-integrated CSV-files to a fully integrated relational database, etc.</p><p>We are calling for non-typical database contributions that report on</p><li>Experiences in handling data for scientific and industrial purposes </li><li>Experiences in handling data in data science/ML/AI Workflows </li><li>Efforts to create, evaluate or use data for benchmarking </li><li>Data preparation/cleaning, and data quality war stories </li><li>Data life cycle Management </li><li>Long-term data preservation and curation </li><li>Data hubs and repositories </li><li>Description of datasets of general interest and open data </li><li>Data and the law – legally managing data </li><li>Possible impacts on our publishing culture<p/><p>Submissions can range from single pages, for instance to introduce a dataset, to full-fledged scientific contributions, for instance an experimental analysis of data cleaning methods or war stories.</p><p>Expected size of the paper: 8–10 pages, double-column (cf. the author guidelines at www.springer.com/13222). Contributions either in German or in English are welcome.</p><p>Deadline for submissions: Feb. 1st, 2019</p><p>Issue delivery: DASP-2-2019 (July 2019)</p><p>Guest editors:</p><p>Jens Dittrich, Universität des Saarlandes</p><p>jens.dittrich@cs.uni-saarland.de</p><p>Felix Naumann, Hasso Plattner Institut, Universität Potsdam</p><p>Felix.Naumann@hpi.de</p><p>Norbert Ritter, Universität Hamburg</p><p>ritter@informatik.uni-hamburg.de</p><p>  </p><p><b>Best Workshop Papers of BTW 2019</b></p><p>This special issue of the “Datenbank-Spektrum” is dedicated to the Best Papers of the Workshops running at the BTW 2019 at the University of Rostock. The selected Workshop contributions should be extended to match the format of regular DASP papers.</p><p>Paper format: 8-10 pages, double-column</p><p>Selection of the Best Papers by the Workshop chairs and the guest editor: April 15th, 2019</p><p>Deadline for submissions: June 1st, 2019</p><p>Issue delivery: DASP-3-2019 (November 2019)</p><p>Guest editor:</p><p>Theo Härder, University of Kaiserslautern</p><p>haerder@cs.uni-kl.de</p><p>  </p><p>  </p><p><b>Trends in Information Retrieval Evaluation</b></p><p>Evaluation is a central aspect in the research and development of information retrieval systems. In academia, the quantitative evaluation of such systems is mostly known under the term Cranfield paradigm. This research method has been established for more than 25 years in international evaluation campaigns such as the Text Retrieval Conference (TREC) or the Conference and Labs of the Evaluation Forum (CLEF). Meanwhile industrial research has taken a completely different approach. Many companies are able to access a large number of users and their interactions, which can be recorded and evaluated. These infrastructures allow alternative evaluations like large-scale A/B experiments or other online methods. In the last years, different approaches to go beyond TREC-style evaluations emerged to close the gap and to bring together academic and industrial evaluation.</p><p>We are calling for articles that report on novel Evaluation efforts, like:</p></li><li>Living Labs </li><li>Evaluation as a service </li><li>Large-scale A/B tests </li><li>Interactive retrieval evaluation </li><li>Session-based evaluation </li><li>User-centered evaluation </li><li>Counterfactual evaluation </li><li>Novel evaluations in application domains such as cultural heritage, digital libraries, social media, expert search, health information, etc. </li><li>Other evaluations that go beyond TREC <p>Expected size of the paper: 8–10 pages, double-column (cf. the author guidelines at www.springer.com/13222. Contributions either in German or in English are welcome.</p><p>Deadline for submissions: Oct. 1st, 2019</p><p>Issue delivery: DASP-1-2020 (March 2020)</p><p>Guest editors:</p><p>Philipp Schaer, Technische Hochschule Köln</p><p>philipp.schaer@th-koeln.de</p><p>Klaus Berberich, Hochschule für Technik und Wirtschaft des Saarlandes</p><p>klaus.berberich@htwsaar.de</p></li>
    9 schema:inLanguage de
    10 en
    11 schema:isAccessibleForFree false
    12 schema:issn 1610-1995
    13 1618-2162
    14 schema:license Hybrid (Open Choice)
    15 schema:name Datenbank-Spektrum
    16 schema:productId N7617bee048d64da3899133b41fa301df
    17 N92095394b0334ebab44ea30f2bb6cd94
    18 Neb396c5a05654c51adb5d5d1e5fdd25c
    19 Nede0df0312734603a83114d0b2eb44b2
    20 schema:publisher N3b293a3ab6474214aa49fced562c0d62
    21 schema:publisherImprint Springer
    22 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1136415
    23 schema:sdDatePublished 2019-03-18T11:05
    24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    25 schema:sdPublisher N4e16e0f067c34a5494a81456ed79e1d1
    26 schema:startYear 2001
    27 schema:url http://link.springer.com/journal/13222
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset journals
    30 rdf:type schema:Periodical
    31 N3b293a3ab6474214aa49fced562c0d62 schema:name Springer Berlin Heidelberg
    32 rdf:type schema:Organization
    33 N4e16e0f067c34a5494a81456ed79e1d1 schema:name Springer Nature - SN SciGraph project
    34 rdf:type schema:Organization
    35 N7617bee048d64da3899133b41fa301df schema:name nsd_ids_id
    36 schema:value 483867
    37 rdf:type schema:PropertyValue
    38 N92095394b0334ebab44ea30f2bb6cd94 schema:name springer_id
    39 schema:value 13222
    40 rdf:type schema:PropertyValue
    41 Neb396c5a05654c51adb5d5d1e5fdd25c schema:name dimensions_id
    42 schema:value 136415
    43 rdf:type schema:PropertyValue
    44 Nede0df0312734603a83114d0b2eb44b2 schema:name nlm_unique_id
    45 schema:value 101718074
    46 rdf:type schema:PropertyValue
    47 sg:ontologies/product-market-codes/522000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    48 schema:name IT in Business
    49 rdf:type schema:DefinedTerm
    50 sg:ontologies/product-market-codes/I13006 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    51 schema:name Computer Systems Organization and Communication Networks
    52 rdf:type schema:DefinedTerm
    53 sg:ontologies/product-market-codes/I15009 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    54 schema:name Data Structures and Information Theory
    55 rdf:type schema:DefinedTerm
    56 sg:ontologies/product-market-codes/I18024 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    57 schema:name Database Management
    58 rdf:type schema:DefinedTerm
    59 sg:ontologies/product-market-codes/I18030 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    60 schema:name Data Mining and Knowledge Discovery
    61 rdf:type schema:DefinedTerm
    62 sg:ontologies/product-market-codes/I18032 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    63 schema:name Information Storage and Retrieval
    64 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...