Journal of Computational Neuroscience View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

1994

PUBLISHER

Springer US

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/10827

Recent publications latest 20 shown

  • 2019-04-12 From receptive profiles to a metric model of V1.
  • 2019-04-05 Slowdown of BCM plasticity with many synapses.
  • 2019-03-20 Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations
  • 2019-02-16 A coarse-graining framework for spiking neuronal networks: from strongly-coupled conductance-based integrate-and-fire neurons to augmented systems of ODEs
  • 2019-02-09 Outgrowing seizures in Childhood Absence Epilepsy: time delays and bistability
  • 2019-02 An exploratory data analysis method for identifying brain regions and frequencies of interest from large-scale neural recordings
  • 2019-02 Convolutional neural network models of V1 responses to complex patterns
  • 2019-02 Stability of point process spiking neuron models
  • 2019-02 Motor imagery and mental fatigue: inter-relationship and EEG based estimation
  • 2019-02 Linear feature projection-based real-time decoding of limb state from dorsal root ganglion recordings
  • 2019-02 An intracerebral exploration of functional connectivity during word production
  • 2019-02 Emerging techniques in statistical analysis of neural data
  • 2019-02 Ensembles of change-point detectors: implications for real-time BMI applications
  • 2019-02 Predicting state transitions in brain dynamics through spectral difference of phase-space graphs
  • 2019-01-19 Network structure and input integration in competing firing rate models for decision-making
  • 2018-12 Modeling the interactions between stimulation and physiologically induced APs in a mammalian nerve fiber: dependence on frequency and fiber diameter
  • 2018-12 Linear-nonlinear-time-warp-poisson models of neural activity
  • 2018-12 Dendritic sodium spikes endow neurons with inverse firing rate response to correlated synaptic activity
  • 2018-12 A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations
  • 2018-12 Replicability or reproducibility? On the replication crisis in computational neuroscience and sharing only relevant detail
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/B18006", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Neurosciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/H36001", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Neurology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/B12008", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Human Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I16005", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Theory of Computation", 
            "type": "DefinedTerm"
          }
        ], 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "0.758", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.888", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2017", 
            "ratingValue": "1.606", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.483", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.483", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.871", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.871", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2014", 
            "ratingValue": "1.739", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2014", 
            "ratingValue": "1.739", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2013", 
            "ratingValue": "2.087", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2013", 
            "ratingValue": "2.087", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2010", 
            "ratingValue": "2.325", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2009", 
            "ratingValue": "2.220", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2012", 
            "ratingValue": "2.439", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2012", 
            "ratingValue": "2.439", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2011", 
            "ratingValue": "2.510", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2011", 
            "ratingValue": "2.510", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2010", 
            "ratingValue": "2.325", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2009", 
            "ratingValue": "2.220", 
            "type": "Rating"
          }
        ], 
        "description": "

    Call for Papers: Special Issue on the Statistical Analysis of Neural Data

    Topics

    Models of Neural Systems: Mechanistic and statistical models are used to understand and explain observed data. Such models can also be used to estimate latent variables (other neural or behavioral signals) that correlate with measured data. For example state-space models are used to understand how latent variables (states) influence neural and behavioral measurements or to simply explain how and why control systems in the central nervous system operate the way they do. Papers that develop models to estimate latent signals or to explain observed phenomena are encouraged to submit for this topic.

    \u00a0

    Control of Neural Systems: Control theory is a field that entails the analysis of dynamical systems and the synthesis of controllers that actuate these systems to meet specific objectives (e.g. tracking a signal, rejecting disturbances, stabilizing an unstable system). Control theory has emerged as an important field in neuroscience because it has become possible to more easily manipulate the chemical and electrical patterns in the brain (the dynamical system to be controlled) with drugs that cross the blood brain barrier, electrical stimulation delivered through electrodes implanted into the brain, or via light delivered through optical fibers that excites genetically manipulated neurons. Papers addressing methods and/or applications to study\u00a0 (model) or manipulate neural systems with exogenous inputs using modeling are encouraged to submit for this topic.

    \u00a0

    Analysis of Neural Systems: Analysis of neurophysiological and behavioral data from neuroscience investigations is a fundamental task in computational and statistical neuroscience. The task can be challenging when the following one or more experimental conditions are present: (i) The dimensionality of the data are scaled up from an order of tens to hundreds or even larger; (ii) The data are either very noisy with a very low signal-to-noise ratio and/or exhibit high variability (across trials or time); (iii) There is an unknown relationship between neural recordings and measured behavior, especially at different temporal scales. \u00a0Papers addressing methods and/or applications of methods to analyze neurophysiological and behavioral data are encouraged to submit for this topic.

    \u00a0Due Date:\u00a0January 15, 2018

    The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily, theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods with the potential to yield insights into the function of the nervous system, are also welcomed. It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience. However, papers that are primarily devoted to new methods or analyses should demonstrate their utility for the investigation of mechanisms or principles of neural function.

    \u00a0

    Neuroscience Peer Review Consortium
    The Journal is pleased to be a member of the Neuroscience Peer Review Consortium (NPRC), an alliance of neuroscience journals that have agreed to share manuscript reviews at the author's request.

    ", "editor": [ { "familyName": "Destexhe", "givenName": "Alain", "type": "Person" } ], "id": "sg:journal.1112739", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "0929-5313", "1573-6873" ], "license": "Hybrid (Open Choice)", "name": "Journal of Computational Neuroscience", "productId": [ { "name": "dimensions_id", "type": "PropertyValue", "value": [ "112739" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "10827" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "97657744" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "0929-5313/JOURNAL OF COMPUTATIONAL NEUROSCIENCE" ] }, { "name": "scopus_id", "type": "PropertyValue", "value": [ "16690" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "9439510" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "420741" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "14505" ] } ], "publisher": { "name": "Springer US", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1112739" ], "sdDataset": "journals", "sdDatePublished": "2021-01-19T05:00", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///pack/app/journals_20190313_sn_only.jsonl", "startYear": "1994", "type": "Periodical", "url": "http://link.springer.com/journal/10827" } ]

     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1112739'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1112739'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1112739'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1112739'


     

    This table displays all metadata directly associated to this object as RDF triples.

    207 TRIPLES      21 PREDICATES      51 URIs      43 LITERALS      30 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1112739 schema:about sg:ontologies/product-market-codes/B12008
    2 sg:ontologies/product-market-codes/B18006
    3 sg:ontologies/product-market-codes/H36001
    4 sg:ontologies/product-market-codes/I16005
    5 schema:contentRating N01b8e92b87594a43a6be847210ea1f08
    6 N0b6af500e9d44749ad44667e82d2ec55
    7 N19e375b0db02490fa5d28d7bb005a731
    8 N25da3f977c8347f9af32aa6c1fa1fb0e
    9 N2eacdcc0c0af448fad0814c4057577ca
    10 N2ec32af5d7a749f49b116a7989662bd5
    11 N41c7b13fa62f4eddb38428414ea0f153
    12 N4360ed5ce9b84c029766fe1798c942dd
    13 N58738946aed245a5bf9247acd99c3ee9
    14 N5f40396059384a4da306d2f6d105567b
    15 Na2d38e1b355548a6a4a2371a34ac0c43
    16 Nc388499f5abb4aa58427dc39161a831a
    17 Nc8c9232d08e346a98cf88518805c5b8b
    18 Nd625be8539ff44c3ad7304fa0ca4619f
    19 Ne667f069dd6d4d668df280d215b5009e
    20 Ne7b59e0e068e41359db840e9ea4b1e63
    21 Nece56f5b163f42b2bca41d87f1270acf
    22 Nfb9a810114da4ef3b1211495ba842cc5
    23 Nffe6bf3aef294624b1469b199f7e8b0d
    24 schema:description <p/><p/><p><b><i>Call for Papers: Special Issue on the Statistical Analysis of Neural Data</i></b></p><p><b>Topics </b></p><p><b>Models of Neural Systems:</b> Mechanistic and statistical models are used to understand and explain observed data. Such models can also be used to estimate latent variables (other neural or behavioral signals) that correlate with measured data. For example state-space models are used to understand how latent variables (states) influence neural and behavioral measurements or to simply explain how and why control systems in the central nervous system operate the way they do. Papers that develop models to estimate latent signals or to explain observed phenomena are encouraged to submit for this topic.</p><p><b> </b></p><p><b>Control of Neural Systems: </b>Control theory is a field that entails the analysis of dynamical systems and the synthesis of controllers that actuate these systems to meet specific objectives (e.g. tracking a signal, rejecting disturbances, stabilizing an unstable system). Control theory has emerged as an important field in neuroscience because it has become possible to more easily manipulate the chemical and electrical patterns in the brain (the dynamical system to be controlled) with drugs that cross the blood brain barrier, electrical stimulation delivered through electrodes implanted into the brain, or via light delivered through optical fibers that excites genetically manipulated neurons. Papers addressing methods and/or applications to study  (model) or manipulate neural systems with exogenous inputs using modeling are encouraged to submit for this topic.</p><p><b> </b></p><p><b>Analysis of Neural Systems</b>: Analysis of neurophysiological and behavioral data from neuroscience investigations is a fundamental task in computational and statistical neuroscience. The task can be challenging when the following one or more experimental conditions are present: (i) The dimensionality of the data are scaled up from an order of tens to hundreds or even larger; (ii) The data are either very noisy with a very low signal-to-noise ratio and/or exhibit high variability (across trials or time); (iii) There is an unknown relationship between neural recordings and measured behavior, especially at different temporal scales.  Papers addressing methods and/or applications of methods to analyze neurophysiological and behavioral data are encouraged to submit for this topic.</p><p> <b>Due Date: January 15, 2018</b></p><p/><p/><p/><p>The <i>Journal of Computational Neuroscience</i> provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The <i>Journal of Computational Neuroscience</i> publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily, theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods with the potential to yield insights into the function of the nervous system, are also welcomed. It is anticipated that all levels of analysis from cognitive to cellular will be represented in the <i>Journal of Computational Neuroscience. </i>However, papers that are primarily devoted to new methods or analyses should demonstrate their utility for the investigation of mechanisms or principles of neural function.</p><p> </p><p><b>Neuroscience Peer Review Consortium<br/></b>The Journal is pleased to be a member of the Neuroscience Peer Review Consortium (NPRC), an alliance of neuroscience journals that have agreed to share manuscript reviews at the author's request. </p><p/>
    25 schema:editor N9334ce67f40d49f8836f4a21c224ad46
    26 schema:inLanguage en
    27 schema:isAccessibleForFree false
    28 schema:issn 0929-5313
    29 1573-6873
    30 schema:license Hybrid (Open Choice)
    31 schema:name Journal of Computational Neuroscience
    32 schema:productId N71b8fa46bcf04aadac07540eb2d20107
    33 N86946a1ea7104765a6c32e334be67ade
    34 N9bbaa9030d8248aa9e4363a6b3ae8caf
    35 Na16220208c4c4c748b0609d708cd9b8c
    36 Na16a92b0b60242cc91c382863783adb0
    37 Nc20af3e60ffa4d3fb32c7e3075fa0006
    38 Ndea10ff32f5f46fa8e80b0e18a49d4b8
    39 Nf0e4626b37af442fbecc7a338fc746f7
    40 schema:publisher N7a0846aa55ef4cd6bee4ac9b8f487572
    41 schema:publisherImprint Springer
    42 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1112739
    43 schema:sdDatePublished 2021-01-19T05:00
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nccd711d62aed44ec896a7d0ee9ade832
    46 schema:startYear 1994
    47 schema:url http://link.springer.com/journal/10827
    48 sgo:license sg:explorer/license/
    49 sgo:sdDataset journals
    50 rdf:type schema:Periodical
    51 N0162bd40e6dc40adbe74ff2336ea1663 rdf:first impact_factor_wos
    52 rdf:rest rdf:nil
    53 N01b8e92b87594a43a6be847210ea1f08 schema:author N4eaf283ec19b4cd395fd9689a5709202
    54 schema:dateCreated 2011
    55 schema:ratingValue 2.510
    56 rdf:type schema:Rating
    57 N03b4b78a5d184a7ba11f71f1b18981d6 rdf:first impact_factor_wos
    58 rdf:rest rdf:nil
    59 N0b6af500e9d44749ad44667e82d2ec55 schema:author Na62b04c520b44f1cb2effad4fc6dc774
    60 schema:dateCreated 2013
    61 schema:ratingValue 2.087
    62 rdf:type schema:Rating
    63 N0c8b8e38a4744de0b2739bf04691664f rdf:first impact_factor_wos
    64 rdf:rest rdf:nil
    65 N19e375b0db02490fa5d28d7bb005a731 schema:author N0162bd40e6dc40adbe74ff2336ea1663
    66 schema:dateCreated 2009
    67 schema:ratingValue 2.220
    68 rdf:type schema:Rating
    69 N1ad190b35da14dcf893cddc3e08aca9b rdf:first impact_factor_wos
    70 rdf:rest rdf:nil
    71 N25b29e1c54174dee8a64fbbd43dc6574 rdf:first impact_factor_wos
    72 rdf:rest rdf:nil
    73 N25da3f977c8347f9af32aa6c1fa1fb0e schema:author N0c8b8e38a4744de0b2739bf04691664f
    74 schema:dateCreated 2010
    75 schema:ratingValue 2.325
    76 rdf:type schema:Rating
    77 N2eacdcc0c0af448fad0814c4057577ca schema:author Nd202b12898614eaf8bbf318cb7e098a5
    78 schema:dateCreated 2010
    79 schema:ratingValue 2.325
    80 rdf:type schema:Rating
    81 N2ec32af5d7a749f49b116a7989662bd5 schema:author Nfc20957a8a5c4c1eb0f2fae4f50c30cd
    82 schema:ratingValue 0.758
    83 rdf:type schema:Rating
    84 N41c7b13fa62f4eddb38428414ea0f153 schema:author Neb68aed757854a98a93c69e3f99f057a
    85 schema:dateCreated 2017
    86 schema:ratingValue 1.606
    87 rdf:type schema:Rating
    88 N42c86a050ca246438eefd6caa7a28ff9 rdf:first impact_factor_wos
    89 rdf:rest rdf:nil
    90 N4360ed5ce9b84c029766fe1798c942dd schema:author N54154077522d4ee1a94243d9aaefb171
    91 schema:dateCreated 2015
    92 schema:ratingValue 1.871
    93 rdf:type schema:Rating
    94 N4eaf283ec19b4cd395fd9689a5709202 rdf:first impact_factor_wos
    95 rdf:rest rdf:nil
    96 N4ef67e2cdb094e4aa9a505eea95bf2ac rdf:first impact_factor_wos
    97 rdf:rest rdf:nil
    98 N54154077522d4ee1a94243d9aaefb171 rdf:first impact_factor_wos
    99 rdf:rest rdf:nil
    100 N58738946aed245a5bf9247acd99c3ee9 schema:author N42c86a050ca246438eefd6caa7a28ff9
    101 schema:dateCreated 2013
    102 schema:ratingValue 2.087
    103 rdf:type schema:Rating
    104 N5f40396059384a4da306d2f6d105567b schema:author N9ea3b3a5bc92472b9a265bee59924101
    105 schema:dateCreated 2014
    106 schema:ratingValue 1.739
    107 rdf:type schema:Rating
    108 N64ad893635814707a0dca891508051e0 rdf:first sjr
    109 rdf:rest rdf:nil
    110 N71b8fa46bcf04aadac07540eb2d20107 schema:name dimensions_id
    111 schema:value 112739
    112 rdf:type schema:PropertyValue
    113 N73389f3455164b2a88771c830857b329 schema:familyName Destexhe
    114 schema:givenName Alain
    115 rdf:type schema:Person
    116 N7a0846aa55ef4cd6bee4ac9b8f487572 schema:name Springer US
    117 rdf:type schema:Organization
    118 N86946a1ea7104765a6c32e334be67ade schema:name era_ids_id
    119 schema:value 14505
    120 rdf:type schema:PropertyValue
    121 N9334ce67f40d49f8836f4a21c224ad46 rdf:first N73389f3455164b2a88771c830857b329
    122 rdf:rest rdf:nil
    123 N9bbaa9030d8248aa9e4363a6b3ae8caf schema:name springer_id
    124 schema:value 10827
    125 rdf:type schema:PropertyValue
    126 N9ea3b3a5bc92472b9a265bee59924101 rdf:first impact_factor_wos
    127 rdf:rest rdf:nil
    128 N9f72e16970e54cd594a7d7d6c7a70c69 rdf:first impact_factor_wos
    129 rdf:rest rdf:nil
    130 Na16220208c4c4c748b0609d708cd9b8c schema:name nlm_unique_id
    131 schema:value 9439510
    132 rdf:type schema:PropertyValue
    133 Na16a92b0b60242cc91c382863783adb0 schema:name lccn_id
    134 schema:value 97657744
    135 rdf:type schema:PropertyValue
    136 Na2d38e1b355548a6a4a2371a34ac0c43 schema:author N9f72e16970e54cd594a7d7d6c7a70c69
    137 schema:dateCreated 2009
    138 schema:ratingValue 2.220
    139 rdf:type schema:Rating
    140 Na62b04c520b44f1cb2effad4fc6dc774 rdf:first impact_factor_wos
    141 rdf:rest rdf:nil
    142 Nb4b929b1e778498abda019e7ddbed46b rdf:first impact_factor_wos
    143 rdf:rest rdf:nil
    144 Nc0d1ce7ffac940c5aa0d68c653df6250 rdf:first impact_factor_wos
    145 rdf:rest rdf:nil
    146 Nc20af3e60ffa4d3fb32c7e3075fa0006 schema:name wos_id
    147 schema:value 0929-5313/JOURNAL OF COMPUTATIONAL NEUROSCIENCE
    148 rdf:type schema:PropertyValue
    149 Nc388499f5abb4aa58427dc39161a831a schema:author Nfca22207d6a047c4afdc37f07a6234c4
    150 schema:dateCreated 2015
    151 schema:ratingValue 1.871
    152 rdf:type schema:Rating
    153 Nc8c9232d08e346a98cf88518805c5b8b schema:author Nb4b929b1e778498abda019e7ddbed46b
    154 schema:dateCreated 2016
    155 schema:ratingValue 1.483
    156 rdf:type schema:Rating
    157 Nccd711d62aed44ec896a7d0ee9ade832 schema:name Springer Nature - SN SciGraph project
    158 rdf:type schema:Organization
    159 Nd202b12898614eaf8bbf318cb7e098a5 rdf:first impact_factor_wos
    160 rdf:rest rdf:nil
    161 Nd625be8539ff44c3ad7304fa0ca4619f schema:author Nc0d1ce7ffac940c5aa0d68c653df6250
    162 schema:dateCreated 2012
    163 schema:ratingValue 2.439
    164 rdf:type schema:Rating
    165 Ndea10ff32f5f46fa8e80b0e18a49d4b8 schema:name nsd_ids_id
    166 schema:value 420741
    167 rdf:type schema:PropertyValue
    168 Ne667f069dd6d4d668df280d215b5009e schema:author N25b29e1c54174dee8a64fbbd43dc6574
    169 schema:dateCreated 2016
    170 schema:ratingValue 1.483
    171 rdf:type schema:Rating
    172 Ne7b59e0e068e41359db840e9ea4b1e63 schema:author N1ad190b35da14dcf893cddc3e08aca9b
    173 schema:dateCreated 2011
    174 schema:ratingValue 2.510
    175 rdf:type schema:Rating
    176 Neb68aed757854a98a93c69e3f99f057a rdf:first impact_factor_wos
    177 rdf:rest rdf:nil
    178 Nece56f5b163f42b2bca41d87f1270acf schema:author N4ef67e2cdb094e4aa9a505eea95bf2ac
    179 schema:dateCreated 2014
    180 schema:ratingValue 1.739
    181 rdf:type schema:Rating
    182 Nf0e4626b37af442fbecc7a338fc746f7 schema:name scopus_id
    183 schema:value 16690
    184 rdf:type schema:PropertyValue
    185 Nfb9a810114da4ef3b1211495ba842cc5 schema:author N03b4b78a5d184a7ba11f71f1b18981d6
    186 schema:dateCreated 2012
    187 schema:ratingValue 2.439
    188 rdf:type schema:Rating
    189 Nfc20957a8a5c4c1eb0f2fae4f50c30cd rdf:first snip
    190 rdf:rest rdf:nil
    191 Nfca22207d6a047c4afdc37f07a6234c4 rdf:first impact_factor_wos
    192 rdf:rest rdf:nil
    193 Nffe6bf3aef294624b1469b199f7e8b0d schema:author N64ad893635814707a0dca891508051e0
    194 schema:ratingValue 0.888
    195 rdf:type schema:Rating
    196 sg:ontologies/product-market-codes/B12008 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    197 schema:name Human Genetics
    198 rdf:type schema:DefinedTerm
    199 sg:ontologies/product-market-codes/B18006 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    200 schema:name Neurosciences
    201 rdf:type schema:DefinedTerm
    202 sg:ontologies/product-market-codes/H36001 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    203 schema:name Neurology
    204 rdf:type schema:DefinedTerm
    205 sg:ontologies/product-market-codes/I16005 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    206 schema:name Theory of Computation
    207 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...