Journal of Big Data View Homepage


Ontology type: schema:Periodical      Open Access: True


Journal Info

START YEAR

2014

PUBLISHER

Springer International Publishing

LANGUAGE

en

HOMEPAGE

http://journalofbigdata.springeropen.com

Recent publications latest 20 shown

  • 2019-12 Predicting referendum results in the Big Data Era
  • 2019-12 Analysis of diabetes mellitus for early prediction using optimal features selection
  • 2019-12 A parallel and distributed stochastic gradient descent implementation using commodity clusters
  • 2019-12 Identifying and characterizing the effects of calendar and environmental conditions on pediatric admissions in Shanghai
  • 2019-12 Knowledge discovery from a more than a decade studies on healthcare Big Data systems: a scientometrics study
  • 2019-12 How to (better) find a perpetrator in a haystack
  • 2019-12 Bayesian mixture models and their Big Data implementations with application to invasive species presence-only data
  • 2019-12 Survey on deep learning with class imbalance
  • 2019-12 Customer churn prediction in telecom using machine learning in big data platform
  • 2019-12 Mining aspects of customer’s review on the social network
  • 2019-12 Predicting customer’s gender and age depending on mobile phone data
  • 2019-12 Enhanced Secured Map Reduce layer for Big Data privacy and security
  • 2019-12 The effects of class rarity on the evaluation of supervised healthcare fraud detection models
  • 2019-12 Application of variable selection and dimension reduction on predictors of MSE’s development
  • 2019-12 Data mining combined to the multicriteria decision analysis for the improvement of road safety: case of France
  • 2019-12 Investigating the adoption of big data analytics in healthcare: the moderating role of resistance to change
  • 2019-12 A quadri-dimensional approach for poor performance prioritization in mobile networks using Big Data
  • 2019-12 Detecting and understanding urban changes through decomposing the numbers of visitors’ arrivals using human mobility data
  • 2019-12 Manufacturing process data analysis pipelines: a requirements analysis and survey
  • 2019-12 Large-scale e-learning recommender system based on Spark and Hadoop
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I18024", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Database Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I18032", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Information Storage and Retrieval", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I18030", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Data Mining and Knowledge Discovery", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/M14026", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computational Science and Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/M13110", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Mathematical Applications in Computer Science", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T24035", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Communications Engineering, Networks", 
            "type": "DefinedTerm"
          }
        ], 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "4.435", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "1.143", 
            "type": "Rating"
          }
        ], 
        "description": "

    Journal of Big Data publishes high-quality, scholarly research papers, methodologies and case studies covering a broad range of topics, from big data analytics to data-intensive computing and all applications of big data research. The journal closely examines the challenges facing big data research today and going forward including, but not limited to: data capture and storage; search, sharing, and analytics; big data technologies; data visualization; architectures for massively parallel processing; data mining tools and techniques; machine learning algorithms for big data; cloud computing platforms; distributed file systems and databases; and scalable storage systems.

    As an open-access journal, the Journal of Big Data ensures that any published research will remain freely available to all readers, and enables authors to benefit from the widest distribution of their work. Academic and industrial researchers, as well as practitioners, will find the journal to be a definitive reference for all aspects of big data and its applications.

    ", "editor": [ { "familyName": "Furht", "givenName": "Borko", "type": "Person" } ], "id": "sg:journal.1051924", "inLanguage": [ "en" ], "isAccessibleForFree": true, "issn": [ "2196-1115" ], "license": "Fully Open Access", "name": "Journal of Big Data", "productId": [ { "name": "scopus_id", "type": "PropertyValue", "value": [ "21100791292" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101659495" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "491298" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "40537" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "2014254719" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "51924" ] } ], "publisher": { "name": "Springer International Publishing", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1051924" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "startYear": "2014", "type": "Periodical", "url": "http://journalofbigdata.springeropen.com" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1051924'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1051924'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1051924'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1051924'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      21 PREDICATES      33 URIs      23 LITERALS      11 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1051924 schema:about sg:ontologies/product-market-codes/I18024
    2 sg:ontologies/product-market-codes/I18030
    3 sg:ontologies/product-market-codes/I18032
    4 sg:ontologies/product-market-codes/M13110
    5 sg:ontologies/product-market-codes/M14026
    6 sg:ontologies/product-market-codes/T24035
    7 schema:contentRating Ne956eec910e3483fb9b08d7fb77b2695
    8 Nfef88f39f4da4007898c226c32c99928
    9 schema:description <p><i>Journal of Big Data</i> publishes high-quality, scholarly research papers, methodologies and case studies covering a broad range of topics, from big data analytics to data-intensive computing and all applications of big data research. The journal closely examines the challenges facing big data research today and going forward including, but not limited to: data capture and storage; search, sharing, and analytics; big data technologies; data visualization; architectures for massively parallel processing; data mining tools and techniques; machine learning algorithms for big data; cloud computing platforms; distributed file systems and databases; and scalable storage systems. </p><p/><p>As an open-access journal, the <i>Journal of Big Data</i> ensures that any published research will remain freely available to all readers, and enables authors to benefit from the widest distribution of their work. Academic and industrial researchers, as well as practitioners, will find the journal to be a definitive reference for all aspects of big data and its applications.</p>
    10 schema:editor Nd461a6d15b1644b5b24de0fd32dc5976
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:issn 2196-1115
    14 schema:license Fully Open Access
    15 schema:name Journal of Big Data
    16 schema:productId N0be7452770cd4ce6b301c9e7aa1d6e2b
    17 N19a6b81a566a4dfbb7340d5ff8c1fd69
    18 N2397c9a3ff814679b7b91e7721a7e3c9
    19 Nb1777cc7682e4bb18e736a14f7475a38
    20 Nb6aa370d8b7240329860eb05971f355b
    21 Ncf5c8970ecf04d07b2b3247291ff34e0
    22 schema:publisher Nad728e1a303f4287b225ddf343f16058
    23 schema:publisherImprint Springer
    24 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1051924
    25 schema:sdDatePublished 2019-03-18T11:05
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N4f53938a6f3b4de6bbccc1ab376ac260
    28 schema:startYear 2014
    29 schema:url http://journalofbigdata.springeropen.com
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset journals
    32 rdf:type schema:Periodical
    33 N0be7452770cd4ce6b301c9e7aa1d6e2b schema:name springer_id
    34 schema:value 40537
    35 rdf:type schema:PropertyValue
    36 N19a6b81a566a4dfbb7340d5ff8c1fd69 schema:name lccn_id
    37 schema:value 2014254719
    38 rdf:type schema:PropertyValue
    39 N2397c9a3ff814679b7b91e7721a7e3c9 schema:name scopus_id
    40 schema:value 21100791292
    41 rdf:type schema:PropertyValue
    42 N4f53938a6f3b4de6bbccc1ab376ac260 schema:name Springer Nature - SN SciGraph project
    43 rdf:type schema:Organization
    44 N5852e12b1df44f339246534deced7949 schema:familyName Furht
    45 schema:givenName Borko
    46 rdf:type schema:Person
    47 N9c08c9ab29c64bd48be89a15f2931a4e rdf:first sjr
    48 rdf:rest rdf:nil
    49 Nad728e1a303f4287b225ddf343f16058 schema:name Springer International Publishing
    50 rdf:type schema:Organization
    51 Nb1777cc7682e4bb18e736a14f7475a38 schema:name dimensions_id
    52 schema:value 51924
    53 rdf:type schema:PropertyValue
    54 Nb6aa370d8b7240329860eb05971f355b schema:name nsd_ids_id
    55 schema:value 491298
    56 rdf:type schema:PropertyValue
    57 Ncf5c8970ecf04d07b2b3247291ff34e0 schema:name nlm_unique_id
    58 schema:value 101659495
    59 rdf:type schema:PropertyValue
    60 Nd461a6d15b1644b5b24de0fd32dc5976 rdf:first N5852e12b1df44f339246534deced7949
    61 rdf:rest rdf:nil
    62 Nd562a2d8f65f46209dadf910d9921c96 rdf:first snip
    63 rdf:rest rdf:nil
    64 Ne956eec910e3483fb9b08d7fb77b2695 schema:author N9c08c9ab29c64bd48be89a15f2931a4e
    65 schema:ratingValue 1.143
    66 rdf:type schema:Rating
    67 Nfef88f39f4da4007898c226c32c99928 schema:author Nd562a2d8f65f46209dadf910d9921c96
    68 schema:ratingValue 4.435
    69 rdf:type schema:Rating
    70 sg:ontologies/product-market-codes/I18024 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    71 schema:name Database Management
    72 rdf:type schema:DefinedTerm
    73 sg:ontologies/product-market-codes/I18030 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    74 schema:name Data Mining and Knowledge Discovery
    75 rdf:type schema:DefinedTerm
    76 sg:ontologies/product-market-codes/I18032 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    77 schema:name Information Storage and Retrieval
    78 rdf:type schema:DefinedTerm
    79 sg:ontologies/product-market-codes/M13110 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    80 schema:name Mathematical Applications in Computer Science
    81 rdf:type schema:DefinedTerm
    82 sg:ontologies/product-market-codes/M14026 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    83 schema:name Computational Science and Engineering
    84 rdf:type schema:DefinedTerm
    85 sg:ontologies/product-market-codes/T24035 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    86 schema:name Communications Engineering, Networks
    87 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...