The Visual Computer View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

1985

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/371

Recent publications latest 20 shown

  • 2019-04-12 Simultaneous segmentation and correction model for color medical and natural images with intensity inhomogeneity
  • 2019-04-11 Real-time object tracking based on an adaptive transition model and extended Kalman filter to handle full occlusion
  • 2019-04-09 A robust visual tracking method via local feature extraction and saliency detection
  • 2019-04-02 An automatic 3D registration method for rock mass point clouds based on plane detection and polygon matching
  • 2019-04 Fast example searching for input-adaptive data-driven dehazing with Gaussian process regression
  • 2019-04 Preface
  • 2019-04 Histograms of Gaussian normal distribution for 3D feature matching in cluttered scenes
  • 2019-04 Importance-based approach for rough drawings
  • 2019-04 Improving bag-of-poses with semi-temporal pose descriptors for skeleton-based action recognition
  • 2019-04 Action snapshot with single pose and viewpoint
  • 2019-04 Scene classification-oriented saliency detection via the modularized prescription
  • 2019-04 Emotion information visualization through learning of 3D morphable face model
  • 2019-04 Patch-based detection of dynamic objects in CrowdCam images
  • 2019-04 An optimized source term formulation for incompressible SPH
  • 2019-04 A draw call-oriented approach for visibility of static and dynamic scenes with large number of triangles
  • 2019-03-30 NLME: a nonlinear motion estimation-based compression method for animated mesh sequence
  • 2019-03-27 Face detection and tracking using hybrid margin-based ROI techniques
  • 2019-03-26 Skeleton-based action recognition by part-aware graph convolutional networks
  • 2019-03-26 Crowd anomaly detection and localization using histogram of magnitude and momentum
  • 2019-03-23 Candidate-based matching of 3-D point clouds with axially switching pose estimation
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I22013", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computer Graphics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I00001", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computer Science, general", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I22021", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Image Processing and Computer Vision", 
            "type": "DefinedTerm"
          }
        ], 
        "alternateName": "International Journal of Computer Graphics", 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.085", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.401", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2017", 
            "ratingValue": "1.036", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.468", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.060", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2014", 
            "ratingValue": "0.957", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2013", 
            "ratingValue": "1.073", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2009", 
            "ratingValue": "0.786", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2012", 
            "ratingValue": "0.909", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2011", 
            "ratingValue": "0.576", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2010", 
            "ratingValue": "0.583", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2009", 
            "ratingValue": "0.786", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2008", 
            "ratingValue": "1.061", 
            "type": "Rating"
          }
        ], 
        "description": "

    The\u00a0Visual Computer publishes articles on all research fields of \u00a0capturing, recognizing, modelling, analysing and generating shapes and images. It\u00a0includes image understanding, machine learning for graphics and 3D fabrication.

    • 3D Reconstruction
    • Computer Animation
    • Computational Fabrication
    • Computational Geometry\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Computational Photography\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Computer Vision for Computer Graphics \u00a0
    • Data Compression for Graphics
    • Geometric Modelling
    • Geometric Processing
    • HCI and Computer Graphics
    • Human Modelling
    • Image Analysis
    • Image Based Rendering\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Image Processing
    • Machine Learning for Graphics
    • Medical Imaging \u00a0
    • Pattern Recognition
    • Physically Based Modelling
    • Illumination and Rendering Methods \u00a0
    • Robotics and Vision
    • Saliency Methods\u00a0
    • Scientific Visualization
    • Shape and Surface Modelling
    • Shape Analysis and Image Retrieval
    • Shape Matching
    • Sketch-based Modelling
    • Solid Modelling
    • Stylized rendering
    • Textures
    • Virtual and Augmented Reality
    • Visual Analytics
    • Volume Rendering

    All papers are subject to thorough review and, if accepted, will be revised accordingly.

    Original contributions, describing advances in the theory in the above mentioned fields as well as practical results and original applications, are invited.

    ", "editor": [ { "familyName": "Magnenat-Thalmann", "givenName": "Nadia", "type": "Person" } ], "id": "sg:journal.1046897", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "0178-2789", "1432-2315" ], "license": "Hybrid (Open Choice)", "name": "The Visual Computer", "productId": [ { "name": "scopus_id", "type": "PropertyValue", "value": [ "26146" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "0178-2789/VISUAL COMPUTER" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101584127" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "339880" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "371" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "87641548" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "46897" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "18149" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1046897" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "startYear": "1985", "type": "Periodical", "url": "http://link.springer.com/journal/371" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1046897'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1046897'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1046897'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1046897'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      22 PREDICATES      46 URIs      38 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1046897 schema:about sg:ontologies/product-market-codes/I00001
    2 sg:ontologies/product-market-codes/I21000
    3 sg:ontologies/product-market-codes/I22013
    4 sg:ontologies/product-market-codes/I22021
    5 schema:alternateName International Journal of Computer Graphics
    6 schema:contentRating N15f1c6d9464b479ab863bdcdde7f453e
    7 N4b2e0fcf47fc489dafbee57dd7f14a82
    8 N5e74ce05782141a28020b0aa6a8c69f9
    9 N6e37f855e1604aadaa7f8fc2b71f4430
    10 N7fbc583d77024c4987650c98e79f3f2f
    11 N86a1032235dc418693517dae0f4e40cf
    12 N87fda61f3f8a4a93b6ba9c21681b1b0a
    13 N8f916fe68118443687905b6479073f12
    14 Nb58b9db18a8d4fdb96499acc400b6153
    15 Nb5ee71c9b6a6461bbe0c0e4c895f1d12
    16 Nca1ddf19044240f4be0456f9af25d3c4
    17 Nf211767dae16400ab65d5947c79d4887
    18 Nf4691ec8b5ee41acb49384bce4596660
    19 schema:description <p>The <i>Visual Computer </i>publishes articles on all research fields of  capturing, recognizing, modelling, analysing and generating shapes and images. It includes image understanding, machine learning for graphics and 3D fabrication. </p><ul><li>3D Reconstruction </li><li>Computer Animation </li><li>Computational Fabrication </li><li>Computational Geometry                  </li><li>Computational Photography                   </li><li>Computer Vision for Computer Graphics  </li><li>Data Compression for Graphics</li><li>Geometric Modelling </li><li>Geometric Processing </li><li>HCI and Computer Graphics </li><li>Human Modelling </li><li>Image Analysis </li><li>Image Based Rendering                          </li><li>Image Processing </li><li>Machine Learning for Graphics </li><li>Medical Imaging  </li><li>Pattern Recognition </li><li>Physically Based Modelling </li><li>Illumination and Rendering Methods  </li><li>Robotics and Vision </li><li>Saliency Methods  </li><li>Scientific Visualization </li><li>Shape and Surface Modelling </li><li>Shape Analysis and Image Retrieval </li><li>Shape Matching </li><li>Sketch-based Modelling </li><li>Solid Modelling </li><li>Stylized rendering </li><li>Textures </li><li>Virtual and Augmented Reality </li><li>Visual Analytics </li><li>Volume Rendering </li></ul><p>All papers are subject to thorough review and, if accepted, will be revised accordingly. <br/><br/>Original contributions, describing advances in the theory in the above mentioned fields as well as practical results and original applications, are invited. </p>
    20 schema:editor Nd5b6f499430a4555a3f7935d9b2f1a84
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:issn 0178-2789
    24 1432-2315
    25 schema:license Hybrid (Open Choice)
    26 schema:name The Visual Computer
    27 schema:productId N07192c1b46544dd2b25fcd1b3061d7fe
    28 N2cec200fd09f43c1a4c4359dbc4f55bc
    29 N2d41cc155690454cb014e2c8ff51995e
    30 N5bfc7adeb6d8486b8d379ed62e4b117a
    31 N64fb2c0028464b9fa81290a795b75318
    32 N88ca2caa31c74e4397ad1b1d4f978c70
    33 Ncda6e9eee46b4daa83eeed2e5a68d2f9
    34 Nd873df8fd76c41e9a4ffbd54c400c6e6
    35 schema:publisher Ne0e136b1be1740bd99454e898f6ebe43
    36 schema:publisherImprint Springer
    37 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1046897
    38 schema:sdDatePublished 2019-03-18T11:05
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N962f622512284e0b9be67123e854d638
    41 schema:startYear 1985
    42 schema:url http://link.springer.com/journal/371
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset journals
    45 rdf:type schema:Periodical
    46 N07192c1b46544dd2b25fcd1b3061d7fe schema:name nsd_ids_id
    47 schema:value 339880
    48 rdf:type schema:PropertyValue
    49 N15f1c6d9464b479ab863bdcdde7f453e schema:author N175fa3be2df247409de58be9da61c440
    50 schema:dateCreated 2010
    51 schema:ratingValue 0.583
    52 rdf:type schema:Rating
    53 N175fa3be2df247409de58be9da61c440 rdf:first impact_factor_wos
    54 rdf:rest rdf:nil
    55 N1f5c69709ade4838ad2bd6055bbc13b6 rdf:first impact_factor_wos
    56 rdf:rest rdf:nil
    57 N2cec200fd09f43c1a4c4359dbc4f55bc schema:name scopus_id
    58 schema:value 26146
    59 rdf:type schema:PropertyValue
    60 N2d41cc155690454cb014e2c8ff51995e schema:name springer_id
    61 schema:value 371
    62 rdf:type schema:PropertyValue
    63 N37612f6e0f9a4be8bc4825bba7deec25 rdf:first impact_factor_wos
    64 rdf:rest rdf:nil
    65 N466e53d344594a0b91b879b523d0d9c2 rdf:first impact_factor_wos
    66 rdf:rest rdf:nil
    67 N4b2e0fcf47fc489dafbee57dd7f14a82 schema:author N6423a81793c14720a0d819748f6b07a2
    68 schema:ratingValue 0.401
    69 rdf:type schema:Rating
    70 N4e4bcdd652964cd9a1a0748ad490ce57 rdf:first impact_factor_wos
    71 rdf:rest rdf:nil
    72 N585db9ddae7e44bdb00974272eb00a35 rdf:first impact_factor_wos
    73 rdf:rest rdf:nil
    74 N5bfc7adeb6d8486b8d379ed62e4b117a schema:name wos_id
    75 schema:value 0178-2789/VISUAL COMPUTER
    76 rdf:type schema:PropertyValue
    77 N5e74ce05782141a28020b0aa6a8c69f9 schema:author N585db9ddae7e44bdb00974272eb00a35
    78 schema:dateCreated 2015
    79 schema:ratingValue 1.060
    80 rdf:type schema:Rating
    81 N6423a81793c14720a0d819748f6b07a2 rdf:first sjr
    82 rdf:rest rdf:nil
    83 N64fb2c0028464b9fa81290a795b75318 schema:name lccn_id
    84 schema:value 87641548
    85 rdf:type schema:PropertyValue
    86 N6c1b1b53a4214e6a83ab70f0c7966a19 schema:familyName Magnenat-Thalmann
    87 schema:givenName Nadia
    88 rdf:type schema:Person
    89 N6e37f855e1604aadaa7f8fc2b71f4430 schema:author Naa65f139546748a6bbdd50141cba6e54
    90 schema:dateCreated 2009
    91 schema:ratingValue 0.786
    92 rdf:type schema:Rating
    93 N7fbc583d77024c4987650c98e79f3f2f schema:author N9a29dcbbcc3f441a84fd381e7a62331e
    94 schema:dateCreated 2014
    95 schema:ratingValue 0.957
    96 rdf:type schema:Rating
    97 N86a1032235dc418693517dae0f4e40cf schema:author Nfc64d8de888642c7a4b953da4fa7ab52
    98 schema:ratingValue 1.085
    99 rdf:type schema:Rating
    100 N87fda61f3f8a4a93b6ba9c21681b1b0a schema:author Nc47497368eac4791b195046e9fe79493
    101 schema:dateCreated 2009
    102 schema:ratingValue 0.786
    103 rdf:type schema:Rating
    104 N88ca2caa31c74e4397ad1b1d4f978c70 schema:name era_ids_id
    105 schema:value 18149
    106 rdf:type schema:PropertyValue
    107 N8f916fe68118443687905b6479073f12 schema:author N1f5c69709ade4838ad2bd6055bbc13b6
    108 schema:dateCreated 2011
    109 schema:ratingValue 0.576
    110 rdf:type schema:Rating
    111 N962f622512284e0b9be67123e854d638 schema:name Springer Nature - SN SciGraph project
    112 rdf:type schema:Organization
    113 N9a29dcbbcc3f441a84fd381e7a62331e rdf:first impact_factor_wos
    114 rdf:rest rdf:nil
    115 Naa65f139546748a6bbdd50141cba6e54 rdf:first impact_factor_wos
    116 rdf:rest rdf:nil
    117 Nb58b9db18a8d4fdb96499acc400b6153 schema:author Nfe937051683b4d3db90d45622de9fcda
    118 schema:dateCreated 2016
    119 schema:ratingValue 1.468
    120 rdf:type schema:Rating
    121 Nb5ee71c9b6a6461bbe0c0e4c895f1d12 schema:author N466e53d344594a0b91b879b523d0d9c2
    122 schema:dateCreated 2013
    123 schema:ratingValue 1.073
    124 rdf:type schema:Rating
    125 Nc47497368eac4791b195046e9fe79493 rdf:first impact_factor_wos
    126 rdf:rest rdf:nil
    127 Nca1ddf19044240f4be0456f9af25d3c4 schema:author N37612f6e0f9a4be8bc4825bba7deec25
    128 schema:dateCreated 2017
    129 schema:ratingValue 1.036
    130 rdf:type schema:Rating
    131 Ncda6e9eee46b4daa83eeed2e5a68d2f9 schema:name nlm_unique_id
    132 schema:value 101584127
    133 rdf:type schema:PropertyValue
    134 Nd526a29c8f2347ccb5c4c658d733a87f rdf:first impact_factor_wos
    135 rdf:rest rdf:nil
    136 Nd5b6f499430a4555a3f7935d9b2f1a84 rdf:first N6c1b1b53a4214e6a83ab70f0c7966a19
    137 rdf:rest rdf:nil
    138 Nd873df8fd76c41e9a4ffbd54c400c6e6 schema:name dimensions_id
    139 schema:value 46897
    140 rdf:type schema:PropertyValue
    141 Ne0e136b1be1740bd99454e898f6ebe43 schema:name Springer Berlin Heidelberg
    142 rdf:type schema:Organization
    143 Nf211767dae16400ab65d5947c79d4887 schema:author Nd526a29c8f2347ccb5c4c658d733a87f
    144 schema:dateCreated 2012
    145 schema:ratingValue 0.909
    146 rdf:type schema:Rating
    147 Nf4691ec8b5ee41acb49384bce4596660 schema:author N4e4bcdd652964cd9a1a0748ad490ce57
    148 schema:dateCreated 2008
    149 schema:ratingValue 1.061
    150 rdf:type schema:Rating
    151 Nfc64d8de888642c7a4b953da4fa7ab52 rdf:first snip
    152 rdf:rest rdf:nil
    153 Nfe937051683b4d3db90d45622de9fcda rdf:first impact_factor_wos
    154 rdf:rest rdf:nil
    155 sg:ontologies/product-market-codes/I00001 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    156 schema:name Computer Science, general
    157 rdf:type schema:DefinedTerm
    158 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    159 schema:name Artificial Intelligence
    160 rdf:type schema:DefinedTerm
    161 sg:ontologies/product-market-codes/I22013 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    162 schema:name Computer Graphics
    163 rdf:type schema:DefinedTerm
    164 sg:ontologies/product-market-codes/I22021 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    165 schema:name Image Processing and Computer Vision
    166 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...