The Visual Computer View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

1985

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/371

Recent publications latest 20 shown

  • 2019-04-12 Simultaneous segmentation and correction model for color medical and natural images with intensity inhomogeneity
  • 2019-04-11 Real-time object tracking based on an adaptive transition model and extended Kalman filter to handle full occlusion
  • 2019-04-09 A robust visual tracking method via local feature extraction and saliency detection
  • 2019-04-02 An automatic 3D registration method for rock mass point clouds based on plane detection and polygon matching
  • 2019-04 Fast example searching for input-adaptive data-driven dehazing with Gaussian process regression
  • 2019-04 Preface
  • 2019-04 Histograms of Gaussian normal distribution for 3D feature matching in cluttered scenes
  • 2019-04 Importance-based approach for rough drawings
  • 2019-04 Improving bag-of-poses with semi-temporal pose descriptors for skeleton-based action recognition
  • 2019-04 Action snapshot with single pose and viewpoint
  • 2019-04 Emotion information visualization through learning of 3D morphable face model
  • 2019-04 Scene classification-oriented saliency detection via the modularized prescription
  • 2019-04 Patch-based detection of dynamic objects in CrowdCam images
  • 2019-04 A draw call-oriented approach for visibility of static and dynamic scenes with large number of triangles
  • 2019-04 An optimized source term formulation for incompressible SPH
  • 2019-03-30 NLME: a nonlinear motion estimation-based compression method for animated mesh sequence
  • 2019-03-27 Face detection and tracking using hybrid margin-based ROI techniques
  • 2019-03-26 Skeleton-based action recognition by part-aware graph convolutional networks
  • 2019-03-26 Crowd anomaly detection and localization using histogram of magnitude and momentum
  • 2019-03-23 Candidate-based matching of 3-D point clouds with axially switching pose estimation
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I22013", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computer Graphics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I00001", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Computer Science, general", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I22021", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Image Processing and Computer Vision", 
            "type": "DefinedTerm"
          }
        ], 
        "alternateName": "International Journal of Computer Graphics", 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.085", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.401", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2017", 
            "ratingValue": "1.036", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2016", 
            "ratingValue": "1.468", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2015", 
            "ratingValue": "1.060", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2014", 
            "ratingValue": "0.957", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2013", 
            "ratingValue": "1.073", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2009", 
            "ratingValue": "0.786", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2012", 
            "ratingValue": "0.909", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2011", 
            "ratingValue": "0.576", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2010", 
            "ratingValue": "0.583", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2009", 
            "ratingValue": "0.786", 
            "type": "Rating"
          }, 
          {
            "author": "impact_factor_wos", 
            "dateCreated": "2008", 
            "ratingValue": "1.061", 
            "type": "Rating"
          }
        ], 
        "description": "

    The\u00a0Visual Computer publishes articles on all research fields of \u00a0capturing, recognizing, modelling, analysing and generating shapes and images. It\u00a0includes image understanding, machine learning for graphics and 3D fabrication.

    • 3D Reconstruction
    • Computer Animation
    • Computational Fabrication
    • Computational Geometry\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Computational Photography\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Computer Vision for Computer Graphics \u00a0
    • Data Compression for Graphics
    • Geometric Modelling
    • Geometric Processing
    • HCI and Computer Graphics
    • Human Modelling
    • Image Analysis
    • Image Based Rendering\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Image Processing
    • Machine Learning for Graphics
    • Medical Imaging \u00a0
    • Pattern Recognition
    • Physically Based Modelling
    • Illumination and Rendering Methods \u00a0
    • Robotics and Vision
    • Saliency Methods\u00a0
    • Scientific Visualization
    • Shape and Surface Modelling
    • Shape Analysis and Image Retrieval
    • Shape Matching
    • Sketch-based Modelling
    • Solid Modelling
    • Stylized rendering
    • Textures
    • Virtual and Augmented Reality
    • Visual Analytics
    • Volume Rendering

    All papers are subject to thorough review and, if accepted, will be revised accordingly.

    Original contributions, describing advances in the theory in the above mentioned fields as well as practical results and original applications, are invited.

    ", "editor": [ { "familyName": "Magnenat-Thalmann", "givenName": "Nadia", "type": "Person" } ], "id": "sg:journal.1046897", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "0178-2789", "1432-2315" ], "license": "Hybrid (Open Choice)", "name": "The Visual Computer", "productId": [ { "name": "dimensions_id", "type": "PropertyValue", "value": [ "46897" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "371" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "87641548" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "0178-2789/VISUAL COMPUTER" ] }, { "name": "scopus_id", "type": "PropertyValue", "value": [ "26146" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101584127" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "339880" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "18149" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1046897" ], "sdDataset": "journals", "sdDatePublished": "2021-01-19T05:00", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///pack/app/journals_20190313_sn_only.jsonl", "startYear": "1985", "type": "Periodical", "url": "http://link.springer.com/journal/371" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1046897'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1046897'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1046897'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1046897'


     

    This table displays all metadata directly associated to this object as RDF triples.

    166 TRIPLES      22 PREDICATES      46 URIs      38 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1046897 schema:about sg:ontologies/product-market-codes/I00001
    2 sg:ontologies/product-market-codes/I21000
    3 sg:ontologies/product-market-codes/I22013
    4 sg:ontologies/product-market-codes/I22021
    5 schema:alternateName International Journal of Computer Graphics
    6 schema:contentRating N38c270f980d94ec291176b6b6ccba9af
    7 N3c293919dd1c46fc9eaf07c72568e473
    8 N3d385804c3324184a7a33485e8a61abd
    9 N5b5b078bcf30472b9a7be034f814dffb
    10 N5fd097145d7046e9be0598d5ab98634e
    11 N633db1ea553941a896291b8a75c5e8f5
    12 N86053e9806004570bfff917727964433
    13 Nac2aeb2c40da469b88860b8ce1af6b38
    14 Nb317b38e262f43e0a46aef9483b5329e
    15 Nd1187ed187ef451e950428c865a4368b
    16 Nd4bf8a415805481493ca17e0de2a451a
    17 Ne0a98580e2474462bfca49d545f73afd
    18 Nf1d1a331c8d8430ebc56d321c2e4b3d2
    19 schema:description <p>The <i>Visual Computer </i>publishes articles on all research fields of  capturing, recognizing, modelling, analysing and generating shapes and images. It includes image understanding, machine learning for graphics and 3D fabrication. </p><ul><li>3D Reconstruction </li><li>Computer Animation </li><li>Computational Fabrication </li><li>Computational Geometry                  </li><li>Computational Photography                   </li><li>Computer Vision for Computer Graphics  </li><li>Data Compression for Graphics</li><li>Geometric Modelling </li><li>Geometric Processing </li><li>HCI and Computer Graphics </li><li>Human Modelling </li><li>Image Analysis </li><li>Image Based Rendering                          </li><li>Image Processing </li><li>Machine Learning for Graphics </li><li>Medical Imaging  </li><li>Pattern Recognition </li><li>Physically Based Modelling </li><li>Illumination and Rendering Methods  </li><li>Robotics and Vision </li><li>Saliency Methods  </li><li>Scientific Visualization </li><li>Shape and Surface Modelling </li><li>Shape Analysis and Image Retrieval </li><li>Shape Matching </li><li>Sketch-based Modelling </li><li>Solid Modelling </li><li>Stylized rendering </li><li>Textures </li><li>Virtual and Augmented Reality </li><li>Visual Analytics </li><li>Volume Rendering </li></ul><p>All papers are subject to thorough review and, if accepted, will be revised accordingly. <br/><br/>Original contributions, describing advances in the theory in the above mentioned fields as well as practical results and original applications, are invited. </p>
    20 schema:editor N6780c206430c4986a6e243ba4a35a6b2
    21 schema:inLanguage en
    22 schema:isAccessibleForFree false
    23 schema:issn 0178-2789
    24 1432-2315
    25 schema:license Hybrid (Open Choice)
    26 schema:name The Visual Computer
    27 schema:productId N2e784a9cb77c4e4d9b99027f6c21edd1
    28 N41349abab15d4dac989fbfe6171b1479
    29 N637622d33c19467dbd3418d97cadf054
    30 N638a65dd487946f28b4d1440099b71b3
    31 N6409cdfa326a4204927aba2a73ecfcd5
    32 Nce628fb57f004ee59a3517ba45affab8
    33 Nffd5aec554f4471394ff92b798c49b81
    34 Nffdb716239374e4e9b8c51152f6dd136
    35 schema:publisher N121c317d9223444693fd637a7f84fb11
    36 schema:publisherImprint Springer
    37 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1046897
    38 schema:sdDatePublished 2021-01-19T05:00
    39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    40 schema:sdPublisher N1bac66ca00db4391bf465d41e228b1b2
    41 schema:startYear 1985
    42 schema:url http://link.springer.com/journal/371
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset journals
    45 rdf:type schema:Periodical
    46 N037e4ff5d55943b7b9e8d02f7d203552 rdf:first impact_factor_wos
    47 rdf:rest rdf:nil
    48 N0be3c14a37a744f3858015f7a14f5628 rdf:first snip
    49 rdf:rest rdf:nil
    50 N121c317d9223444693fd637a7f84fb11 schema:name Springer Berlin Heidelberg
    51 rdf:type schema:Organization
    52 N1bac66ca00db4391bf465d41e228b1b2 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N2b8d0b5b6d7e48d89b57b0ec6da8d91b rdf:first impact_factor_wos
    55 rdf:rest rdf:nil
    56 N2e784a9cb77c4e4d9b99027f6c21edd1 schema:name nsd_ids_id
    57 schema:value 339880
    58 rdf:type schema:PropertyValue
    59 N38c270f980d94ec291176b6b6ccba9af schema:author Ndb7616ccec5b4fbea10bcd914e1940c2
    60 schema:dateCreated 2009
    61 schema:ratingValue 0.786
    62 rdf:type schema:Rating
    63 N3c293919dd1c46fc9eaf07c72568e473 schema:author Nfdb57ac8e23f47afbfe2a417817fdcc1
    64 schema:dateCreated 2014
    65 schema:ratingValue 0.957
    66 rdf:type schema:Rating
    67 N3d385804c3324184a7a33485e8a61abd schema:author Nede981511b7b4a679ba5d207498577c5
    68 schema:dateCreated 2009
    69 schema:ratingValue 0.786
    70 rdf:type schema:Rating
    71 N41349abab15d4dac989fbfe6171b1479 schema:name dimensions_id
    72 schema:value 46897
    73 rdf:type schema:PropertyValue
    74 N497451fcaa6f4de38081baad19c4e4c2 rdf:first impact_factor_wos
    75 rdf:rest rdf:nil
    76 N5b5b078bcf30472b9a7be034f814dffb schema:author Ne220b2cc919c4943b4f59cdda239e1dc
    77 schema:dateCreated 2016
    78 schema:ratingValue 1.468
    79 rdf:type schema:Rating
    80 N5fd097145d7046e9be0598d5ab98634e schema:author N2b8d0b5b6d7e48d89b57b0ec6da8d91b
    81 schema:dateCreated 2012
    82 schema:ratingValue 0.909
    83 rdf:type schema:Rating
    84 N633db1ea553941a896291b8a75c5e8f5 schema:author N0be3c14a37a744f3858015f7a14f5628
    85 schema:ratingValue 1.085
    86 rdf:type schema:Rating
    87 N637622d33c19467dbd3418d97cadf054 schema:name wos_id
    88 schema:value 0178-2789/VISUAL COMPUTER
    89 rdf:type schema:PropertyValue
    90 N638a65dd487946f28b4d1440099b71b3 schema:name scopus_id
    91 schema:value 26146
    92 rdf:type schema:PropertyValue
    93 N6406a48b8a1a4d99aceae3053a4da11e rdf:first sjr
    94 rdf:rest rdf:nil
    95 N6409cdfa326a4204927aba2a73ecfcd5 schema:name lccn_id
    96 schema:value 87641548
    97 rdf:type schema:PropertyValue
    98 N6780c206430c4986a6e243ba4a35a6b2 rdf:first Ncf6317c4089849719e22428c60ce850b
    99 rdf:rest rdf:nil
    100 N6d20adc953fa40ba8ba6a873fc68940e rdf:first impact_factor_wos
    101 rdf:rest rdf:nil
    102 N854a43cc9a094a4eae987a12694f71aa rdf:first impact_factor_wos
    103 rdf:rest rdf:nil
    104 N86053e9806004570bfff917727964433 schema:author N854a43cc9a094a4eae987a12694f71aa
    105 schema:dateCreated 2013
    106 schema:ratingValue 1.073
    107 rdf:type schema:Rating
    108 Nac2aeb2c40da469b88860b8ce1af6b38 schema:author N6406a48b8a1a4d99aceae3053a4da11e
    109 schema:ratingValue 0.401
    110 rdf:type schema:Rating
    111 Nb317b38e262f43e0a46aef9483b5329e schema:author N6d20adc953fa40ba8ba6a873fc68940e
    112 schema:dateCreated 2017
    113 schema:ratingValue 1.036
    114 rdf:type schema:Rating
    115 Nce628fb57f004ee59a3517ba45affab8 schema:name era_ids_id
    116 schema:value 18149
    117 rdf:type schema:PropertyValue
    118 Ncf6317c4089849719e22428c60ce850b schema:familyName Magnenat-Thalmann
    119 schema:givenName Nadia
    120 rdf:type schema:Person
    121 Nd1187ed187ef451e950428c865a4368b schema:author Ne55329ba70134e449e4a7dfe17ea708e
    122 schema:dateCreated 2015
    123 schema:ratingValue 1.060
    124 rdf:type schema:Rating
    125 Nd4bf8a415805481493ca17e0de2a451a schema:author N037e4ff5d55943b7b9e8d02f7d203552
    126 schema:dateCreated 2011
    127 schema:ratingValue 0.576
    128 rdf:type schema:Rating
    129 Nda45204c3bbb4168bc58e27ef1951644 rdf:first impact_factor_wos
    130 rdf:rest rdf:nil
    131 Ndb7616ccec5b4fbea10bcd914e1940c2 rdf:first impact_factor_wos
    132 rdf:rest rdf:nil
    133 Ne0a98580e2474462bfca49d545f73afd schema:author Nda45204c3bbb4168bc58e27ef1951644
    134 schema:dateCreated 2010
    135 schema:ratingValue 0.583
    136 rdf:type schema:Rating
    137 Ne220b2cc919c4943b4f59cdda239e1dc rdf:first impact_factor_wos
    138 rdf:rest rdf:nil
    139 Ne55329ba70134e449e4a7dfe17ea708e rdf:first impact_factor_wos
    140 rdf:rest rdf:nil
    141 Nede981511b7b4a679ba5d207498577c5 rdf:first impact_factor_wos
    142 rdf:rest rdf:nil
    143 Nf1d1a331c8d8430ebc56d321c2e4b3d2 schema:author N497451fcaa6f4de38081baad19c4e4c2
    144 schema:dateCreated 2008
    145 schema:ratingValue 1.061
    146 rdf:type schema:Rating
    147 Nfdb57ac8e23f47afbfe2a417817fdcc1 rdf:first impact_factor_wos
    148 rdf:rest rdf:nil
    149 Nffd5aec554f4471394ff92b798c49b81 schema:name nlm_unique_id
    150 schema:value 101584127
    151 rdf:type schema:PropertyValue
    152 Nffdb716239374e4e9b8c51152f6dd136 schema:name springer_id
    153 schema:value 371
    154 rdf:type schema:PropertyValue
    155 sg:ontologies/product-market-codes/I00001 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    156 schema:name Computer Science, general
    157 rdf:type schema:DefinedTerm
    158 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    159 schema:name Artificial Intelligence
    160 rdf:type schema:DefinedTerm
    161 sg:ontologies/product-market-codes/I22013 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    162 schema:name Computer Graphics
    163 rdf:type schema:DefinedTerm
    164 sg:ontologies/product-market-codes/I22021 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    165 schema:name Image Processing and Computer Vision
    166 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...