The Visual Computer View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

1985

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/371

Recent publications latest 20 shown

  • 2021-10-23 A survey on horizon detection algorithms for maritime video surveillance: advances and future techniques
  • 2021-10-19 Effective fusion of deep multitasking representations for robust visual tracking
  • 2021-10-18 T2CNN: a novel method for crowd counting via two-task convolutional neural network
  • 2021-10-16 Gauss–Seidel progressive iterative approximation (GS-PIA) for subdivision surface interpolation
  • 2021-10-11 Directional selectivity in panoramic and pantophonic interfaces: Flashdark, Narrowcasting for Stereoscopic Photospherical Cinemagraphy, Akabeko Ensemble
  • 2021-10-11 Adapting Game Engines to Curved Spaces
  • 2021-10-11 A novel general blind detection model for image forensics based on DNN
  • 2021-10-09 Efficient ray casting polygonized isosurface of binary volumes
  • 2021-10-09 A novel data hiding by image interpolation using edge quad-tree block complexity
  • 2021-10-08 Three-stage generative network for single-view point cloud completion
  • 2021-10-07 Object-based illumination transferring and rendering for applications of mixed reality
  • 2021-10-05 High-quality image multi-focus fusion to address ringing and blurring artifacts without loss of information
  • 2021-10-04 Global structure-guided learning framework for underwater image enhancement
  • 2021-10-04 An image super-resolution network based on multi-scale convolution fusion
  • 2021-09-27 Cancelable biometric security system based on advanced chaotic maps
  • 2021-09-24 Online health status monitoring of high voltage insulators using deep learning model
  • 2021-09-23 Improved reversible data hiding scheme employing dual image-based least significant bit matching for secure image communication using style transfer
  • 2021-09-22 Correction to: Techniques for BRDF evaluation
  • 2021-09-21 Stacking multiple cues for facial action unit detection
  • 2021-09-18 Automatic recognition of cylinders and planes from unstructured point clouds
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "alternateName": "International Journal of Computer Graphics", 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.1480000019073486", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.4390000104904175", 
            "type": "Rating"
          }
        ], 
        "description": "

    The\u00a0Visual Computer publishes articles on all research fields of \u00a0capturing, recognizing, modelling, analysing and generating shapes and images. It\u00a0includes image understanding, machine learning for graphics and 3D fabrication.

    • 3D Reconstruction
    • Computer Animation
    • Computational Fabrication
    • Computational Geometry\u00a0\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Computational Photography\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Computer Vision for Computer Graphics \u00a0
    • Data Compression for Graphics
    • Geometric Modelling
    • Geometric Processing
    • HCI and Computer Graphics
    • Human Modelling
    • Image Analysis
    • Image Based Rendering\u00a0 \u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0
    • Image Processing
    • Machine Learning for Graphics
    • Medical Imaging \u00a0
    • Pattern Recognition
    • Physically Based Modelling
    • Illumination and Rendering Methods \u00a0
    • Robotics and Vision
    • Saliency Methods\u00a0
    • Scientific Visualization
    • Shape and Surface Modelling
    • Shape Analysis and Image Retrieval
    • Shape Matching
    • Sketch-based Modelling
    • Solid Modelling
    • Stylized rendering
    • Textures
    • Virtual and Augmented Reality
    • Visual Analytics
    • Volume Rendering

    All papers are subject to thorough review and, if accepted, will be revised accordingly.

    Original contributions, describing advances in the theory in the above mentioned fields as well as practical results and original applications, are invited.

    ", "editor": [ { "familyName": "Magnenat-Thalmann", "givenName": "Nadia", "type": "Person" } ], "id": "sg:journal.1046897", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "0178-2789", "1432-2315" ], "license": "Hybrid (Open Choice)", "name": "The Visual Computer", "productId": [ { "name": "dimensions_id", "type": "PropertyValue", "value": [ "46897" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "87641548" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101584127" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "339880" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "18149" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1046897" ], "sdDataset": "journals", "sdDatePublished": "2021-11-01T19:07", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/journal/journal_0.jsonl", "startYear": "1985", "type": "Periodical", "url": "http://link.springer.com/journal/371" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1046897'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1046897'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1046897'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1046897'


     

    This table displays all metadata directly associated to this object as RDF triples.

    61 TRIPLES      21 PREDICATES      28 URIs      24 LITERALS      10 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1046897 schema:alternateName International Journal of Computer Graphics
    2 schema:contentRating N3cab61e3adad4e9287598595b48f3ee8
    3 N9b07a98653514003b45cba6a97dc4a01
    4 schema:description <p>The <i>Visual Computer </i>publishes articles on all research fields of  capturing, recognizing, modelling, analysing and generating shapes and images. It includes image understanding, machine learning for graphics and 3D fabrication. </p><ul><li>3D Reconstruction </li><li>Computer Animation </li><li>Computational Fabrication </li><li>Computational Geometry                  </li><li>Computational Photography                   </li><li>Computer Vision for Computer Graphics  </li><li>Data Compression for Graphics</li><li>Geometric Modelling </li><li>Geometric Processing </li><li>HCI and Computer Graphics </li><li>Human Modelling </li><li>Image Analysis </li><li>Image Based Rendering                          </li><li>Image Processing </li><li>Machine Learning for Graphics </li><li>Medical Imaging  </li><li>Pattern Recognition </li><li>Physically Based Modelling </li><li>Illumination and Rendering Methods  </li><li>Robotics and Vision </li><li>Saliency Methods  </li><li>Scientific Visualization </li><li>Shape and Surface Modelling </li><li>Shape Analysis and Image Retrieval </li><li>Shape Matching </li><li>Sketch-based Modelling </li><li>Solid Modelling </li><li>Stylized rendering </li><li>Textures </li><li>Virtual and Augmented Reality </li><li>Visual Analytics </li><li>Volume Rendering </li></ul><p>All papers are subject to thorough review and, if accepted, will be revised accordingly. <br/><br/>Original contributions, describing advances in the theory in the above mentioned fields as well as practical results and original applications, are invited. </p>
    5 schema:editor N7a9cf00bd764406c806cc4ff1735ddd7
    6 schema:inLanguage en
    7 schema:isAccessibleForFree false
    8 schema:issn 0178-2789
    9 1432-2315
    10 schema:license Hybrid (Open Choice)
    11 schema:name The Visual Computer
    12 schema:productId N24dada8b6e994fe2b311728d94960c5a
    13 N25b31fd3b8c747f2a8feed7db310c49f
    14 N775833bea6984186be76705f0eade6cf
    15 N7d6e24ed59564db9a48d095223f5cdf0
    16 Nc34273885f974b069bd5cd6069bd138c
    17 schema:publisher Nb8885b68c4e64fc59e890ab483770469
    18 schema:publisherImprint Springer
    19 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1046897
    20 schema:sdDatePublished 2021-11-01T19:07
    21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    22 schema:sdPublisher Nb1c3a60aaed243d2a6ff9ebac5d61cf9
    23 schema:startYear 1985
    24 schema:url http://link.springer.com/journal/371
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset journals
    27 rdf:type schema:Periodical
    28 N24dada8b6e994fe2b311728d94960c5a schema:name lccn_id
    29 schema:value 87641548
    30 rdf:type schema:PropertyValue
    31 N25b31fd3b8c747f2a8feed7db310c49f schema:name dimensions_id
    32 schema:value 46897
    33 rdf:type schema:PropertyValue
    34 N3cab61e3adad4e9287598595b48f3ee8 schema:author N45c47bcc57654d60bba5c26e756476c5
    35 schema:ratingValue 0.4390000104904175
    36 rdf:type schema:Rating
    37 N45c47bcc57654d60bba5c26e756476c5 rdf:first sjr
    38 rdf:rest rdf:nil
    39 N775833bea6984186be76705f0eade6cf schema:name era_ids_id
    40 schema:value 18149
    41 rdf:type schema:PropertyValue
    42 N7a9cf00bd764406c806cc4ff1735ddd7 rdf:first N981c538e2e2c491f855de3476e40b25a
    43 rdf:rest rdf:nil
    44 N7d6e24ed59564db9a48d095223f5cdf0 schema:name nlm_unique_id
    45 schema:value 101584127
    46 rdf:type schema:PropertyValue
    47 N981c538e2e2c491f855de3476e40b25a schema:familyName Magnenat-Thalmann
    48 schema:givenName Nadia
    49 rdf:type schema:Person
    50 N9b07a98653514003b45cba6a97dc4a01 schema:author Nf0478b1d61744fbb8c127edba72b4304
    51 schema:ratingValue 1.1480000019073486
    52 rdf:type schema:Rating
    53 Nb1c3a60aaed243d2a6ff9ebac5d61cf9 schema:name Springer Nature - SN SciGraph project
    54 rdf:type schema:Organization
    55 Nb8885b68c4e64fc59e890ab483770469 schema:name Springer Berlin Heidelberg
    56 rdf:type schema:Organization
    57 Nc34273885f974b069bd5cd6069bd138c schema:name nsd_ids_id
    58 schema:value 339880
    59 rdf:type schema:PropertyValue
    60 Nf0478b1d61744fbb8c127edba72b4304 rdf:first snip
    61 rdf:rest rdf:nil
     




    Preview window. Press ESC to close (or click here)


    ...