Machine Vision and Applications View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

1988

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

https://link.springer.com/journal/138

Recent publications latest 20 shown

  • 2021-11-26 The overlapping effect and fusion protocols of data augmentation techniques in iris PAD
  • 2021-11-23 Image projection method for vehicle speed estimation model in video system
  • 2021-11-23 An empirical study of different machine learning techniques for brain tumor classification and subsequent segmentation using hybrid texture feature
  • 2021-11-16 Deep-plane sweep generative adversarial network for consistent multi-view depth estimation
  • 2021-11-02 Graph neural networks in node classification: survey and evaluation
  • 2021-10-30 Semantic convolutional features for face detection
  • 2021-10-30 Viewpoint placement for inspection planning
  • 2021-10-30 Object detection by crossing relational reasoning based on graph neural network
  • 2021-10-18 Lesion-aware attention with neural support vector machine for retinopathy diagnosis
  • 2021-10-14 Saliency detection based on color descriptor and high-level prior
  • 2021-10-12 BPFD-Net: enhanced dehazing model based on Pix2pix framework for single image
  • 2021-10-11 Multi-view subspace clustering with Kronecker-basis-representation-based tensor sparsity measure
  • 2021-10-01 Semi-supervised learning for person re-identification based on style-transfer-generated data by CycleGANs
  • 2021-09-30 Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition
  • 2021-09-27 Squeezed fire binary segmentation model using convolutional neural network for outdoor images on embedded device
  • 2021-09-25 FPANet: Feature-enhanced position attention network for semantic segmentation
  • 2021-09-23 Defect segmentation for multi-illumination quality control systems
  • 2021-09-21 Detection of inclusion by using 3D laser scanner in composite prepreg manufacturing technique using convolutional neural networks
  • 2021-09-16 Integration of 2D iteration and a 3D CNN-based model for multi-type artifact suppression in C-arm cone-beam CT
  • 2021-09-13 Depthwise grouped convolution for object detection
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "0.9549999833106995", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.3700000047683716", 
            "type": "Rating"
          }
        ], 
        "description": "

    Sponsored by the International Association for Pattern Recognition, this journal publishes high-quality, technical contributions in machine vision research and development. Machine Vision and Applications features coverage of all applications and engineering aspects of image-related computing, including original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision.

    \n

    The journal places particular emphasis on the engineering and technology aspects of image processing and computer vision. It includes coverage of the following aspects of machine vision applications: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-END sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization.

    ", "editor": [ { "familyName": "Sukthankar", "givenName": "Rahul", "type": "Person" } ], "id": "sg:journal.1045266", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "0932-8092", "1432-1769" ], "license": "Hybrid (Open Choice)", "name": "Machine Vision and Applications", "productId": [ { "name": "dimensions_id", "type": "PropertyValue", "value": [ "45266" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "88646805" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101562623" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "444499" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "18068" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1045266" ], "sdDataset": "journals", "sdDatePublished": "2021-12-01T20:17", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/journal/journal_0.jsonl", "startYear": "1988", "type": "Periodical", "url": "https://link.springer.com/journal/138" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1045266'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1045266'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1045266'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1045266'


     

    This table displays all metadata directly associated to this object as RDF triples.

    60 TRIPLES      20 PREDICATES      27 URIs      23 LITERALS      10 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1045266 schema:contentRating N3f1d933d5dad4dccaa5d7354c050eb89
    2 N70c211cb5bb8473393c75b951d615db5
    3 schema:description <P>Sponsored by the International Association for Pattern Recognition, this journal publishes high-quality, technical contributions in machine vision research and development. Machine Vision and Applications features coverage of all applications and engineering aspects of image-related computing, including original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision. </P> <P>The journal places particular emphasis on the engineering and technology aspects of image processing and computer vision. It includes coverage of the following aspects of machine vision applications: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-END sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. </P>
    4 schema:editor N373486dbca3d412c8fbd750992dda324
    5 schema:inLanguage en
    6 schema:isAccessibleForFree false
    7 schema:issn 0932-8092
    8 1432-1769
    9 schema:license Hybrid (Open Choice)
    10 schema:name Machine Vision and Applications
    11 schema:productId N03c228f36a4a452aabad2cc30f57dff0
    12 N418e93d0373044818d9925673ed29358
    13 N6b2e7c14c7fa4ffbb324b3d4dbd64edc
    14 Ndb69d45a83e642189ffdaf10065ad378
    15 Nfcbed4fc230f417d93aaed6c079cd4a4
    16 schema:publisher Ndb4b3dba3b9b40e4844ab9925d285d49
    17 schema:publisherImprint Springer
    18 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1045266
    19 schema:sdDatePublished 2021-12-01T20:17
    20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    21 schema:sdPublisher Nedbb249a3ebb4ba29788565f260c673c
    22 schema:startYear 1988
    23 schema:url https://link.springer.com/journal/138
    24 sgo:license sg:explorer/license/
    25 sgo:sdDataset journals
    26 rdf:type schema:Periodical
    27 N03c228f36a4a452aabad2cc30f57dff0 schema:name era_ids_id
    28 schema:value 18068
    29 rdf:type schema:PropertyValue
    30 N373486dbca3d412c8fbd750992dda324 rdf:first Nc6d2bb97737a4b9ba8b22de1e59d309e
    31 rdf:rest rdf:nil
    32 N3bb6152e8edf4470bbfc9ef65cea2536 rdf:first sjr
    33 rdf:rest rdf:nil
    34 N3f1d933d5dad4dccaa5d7354c050eb89 schema:author N4092462d52a547e1a627a47135b78bfa
    35 schema:ratingValue 0.9549999833106995
    36 rdf:type schema:Rating
    37 N4092462d52a547e1a627a47135b78bfa rdf:first snip
    38 rdf:rest rdf:nil
    39 N418e93d0373044818d9925673ed29358 schema:name dimensions_id
    40 schema:value 45266
    41 rdf:type schema:PropertyValue
    42 N6b2e7c14c7fa4ffbb324b3d4dbd64edc schema:name lccn_id
    43 schema:value 88646805
    44 rdf:type schema:PropertyValue
    45 N70c211cb5bb8473393c75b951d615db5 schema:author N3bb6152e8edf4470bbfc9ef65cea2536
    46 schema:ratingValue 0.3700000047683716
    47 rdf:type schema:Rating
    48 Nc6d2bb97737a4b9ba8b22de1e59d309e schema:familyName Sukthankar
    49 schema:givenName Rahul
    50 rdf:type schema:Person
    51 Ndb4b3dba3b9b40e4844ab9925d285d49 schema:name Springer Berlin Heidelberg
    52 rdf:type schema:Organization
    53 Ndb69d45a83e642189ffdaf10065ad378 schema:name nsd_ids_id
    54 schema:value 444499
    55 rdf:type schema:PropertyValue
    56 Nedbb249a3ebb4ba29788565f260c673c schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Nfcbed4fc230f417d93aaed6c079cd4a4 schema:name nlm_unique_id
    59 schema:value 101562623
    60 rdf:type schema:PropertyValue
     




    Preview window. Press ESC to close (or click here)


    ...