Machine Vision and Applications View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

1988

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

https://link.springer.com/journal/138

Recent publications latest 20 shown

  • 2021-11-26 The overlapping effect and fusion protocols of data augmentation techniques in iris PAD
  • 2021-11-23 Image projection method for vehicle speed estimation model in video system
  • 2021-11-23 An empirical study of different machine learning techniques for brain tumor classification and subsequent segmentation using hybrid texture feature
  • 2021-11-16 Deep-plane sweep generative adversarial network for consistent multi-view depth estimation
  • 2021-11-02 Graph neural networks in node classification: survey and evaluation
  • 2021-10-30 Semantic convolutional features for face detection
  • 2021-10-30 Viewpoint placement for inspection planning
  • 2021-10-30 Object detection by crossing relational reasoning based on graph neural network
  • 2021-10-18 Lesion-aware attention with neural support vector machine for retinopathy diagnosis
  • 2021-10-14 Saliency detection based on color descriptor and high-level prior
  • 2021-10-12 BPFD-Net: enhanced dehazing model based on Pix2pix framework for single image
  • 2021-10-11 Multi-view subspace clustering with Kronecker-basis-representation-based tensor sparsity measure
  • 2021-10-01 Semi-supervised learning for person re-identification based on style-transfer-generated data by CycleGANs
  • 2021-09-30 Early, intermediate and late fusion strategies for robust deep learning-based multimodal action recognition
  • 2021-09-27 Squeezed fire binary segmentation model using convolutional neural network for outdoor images on embedded device
  • 2021-09-25 FPANet: Feature-enhanced position attention network for semantic segmentation
  • 2021-09-23 Defect segmentation for multi-illumination quality control systems
  • 2021-09-21 Detection of inclusion by using 3D laser scanner in composite prepreg manufacturing technique using convolutional neural networks
  • 2021-09-16 Integration of 2D iteration and a 3D CNN-based model for multi-type artifact suppression in C-arm cone-beam CT
  • 2021-09-13 Depthwise grouped convolution for object detection
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "0.9549999833106995", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.3700000047683716", 
            "type": "Rating"
          }
        ], 
        "description": "

    Sponsored by the International Association for Pattern Recognition, this journal publishes high-quality, technical contributions in machine vision research and development. Machine Vision and Applications features coverage of all applications and engineering aspects of image-related computing, including original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision.

    \n

    The journal places particular emphasis on the engineering and technology aspects of image processing and computer vision. It includes coverage of the following aspects of machine vision applications: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-END sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization.

    ", "editor": [ { "familyName": "Sukthankar", "givenName": "Rahul", "type": "Person" } ], "id": "sg:journal.1045266", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "0932-8092", "1432-1769" ], "license": "Hybrid (Open Choice)", "name": "Machine Vision and Applications", "productId": [ { "name": "dimensions_id", "type": "PropertyValue", "value": [ "45266" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "88646805" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101562623" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "444499" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "18068" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1045266" ], "sdDataset": "journals", "sdDatePublished": "2021-12-01T20:17", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/journal/journal_0.jsonl", "startYear": "1988", "type": "Periodical", "url": "https://link.springer.com/journal/138" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1045266'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1045266'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1045266'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1045266'


     

    This table displays all metadata directly associated to this object as RDF triples.

    60 TRIPLES      20 PREDICATES      27 URIs      23 LITERALS      10 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1045266 schema:contentRating Nb51096490f984f73b3ff50cc6f8e6f86
    2 Ne0062b2dddeb48faa319556b4537df1c
    3 schema:description <P>Sponsored by the International Association for Pattern Recognition, this journal publishes high-quality, technical contributions in machine vision research and development. Machine Vision and Applications features coverage of all applications and engineering aspects of image-related computing, including original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision. </P> <P>The journal places particular emphasis on the engineering and technology aspects of image processing and computer vision. It includes coverage of the following aspects of machine vision applications: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-END sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. </P>
    4 schema:editor Nadec539cd07a4aacb7e1695f47923cc4
    5 schema:inLanguage en
    6 schema:isAccessibleForFree false
    7 schema:issn 0932-8092
    8 1432-1769
    9 schema:license Hybrid (Open Choice)
    10 schema:name Machine Vision and Applications
    11 schema:productId N0a3bc8ad5fa048e98d2ba94109822d40
    12 N44e121ec70ad4623975391e162643b82
    13 N6a648b5f8d1a4e66bf74c13ee0e40f33
    14 Nc4cba4ffcf0f46619ddae7511539910e
    15 Nc9bdeeef2aff40df86c3f0c47965afee
    16 schema:publisher N01e7bccbc2304539a0caf2a07bec3a08
    17 schema:publisherImprint Springer
    18 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1045266
    19 schema:sdDatePublished 2021-12-01T20:17
    20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    21 schema:sdPublisher Nbe2efced29ee455a9773b1c93544961b
    22 schema:startYear 1988
    23 schema:url https://link.springer.com/journal/138
    24 sgo:license sg:explorer/license/
    25 sgo:sdDataset journals
    26 rdf:type schema:Periodical
    27 N01e7bccbc2304539a0caf2a07bec3a08 schema:name Springer Berlin Heidelberg
    28 rdf:type schema:Organization
    29 N0a3bc8ad5fa048e98d2ba94109822d40 schema:name nsd_ids_id
    30 schema:value 444499
    31 rdf:type schema:PropertyValue
    32 N44e121ec70ad4623975391e162643b82 schema:name era_ids_id
    33 schema:value 18068
    34 rdf:type schema:PropertyValue
    35 N6a648b5f8d1a4e66bf74c13ee0e40f33 schema:name nlm_unique_id
    36 schema:value 101562623
    37 rdf:type schema:PropertyValue
    38 Na44d8b2aba7f4151b2876c60078114d2 rdf:first snip
    39 rdf:rest rdf:nil
    40 Na680c0af06d74c7f85068f5b797e5c38 rdf:first sjr
    41 rdf:rest rdf:nil
    42 Nadec539cd07a4aacb7e1695f47923cc4 rdf:first Nc4e81c07f25348a58c8556181b49c658
    43 rdf:rest rdf:nil
    44 Nb51096490f984f73b3ff50cc6f8e6f86 schema:author Na44d8b2aba7f4151b2876c60078114d2
    45 schema:ratingValue 0.9549999833106995
    46 rdf:type schema:Rating
    47 Nbe2efced29ee455a9773b1c93544961b schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nc4cba4ffcf0f46619ddae7511539910e schema:name dimensions_id
    50 schema:value 45266
    51 rdf:type schema:PropertyValue
    52 Nc4e81c07f25348a58c8556181b49c658 schema:familyName Sukthankar
    53 schema:givenName Rahul
    54 rdf:type schema:Person
    55 Nc9bdeeef2aff40df86c3f0c47965afee schema:name lccn_id
    56 schema:value 88646805
    57 rdf:type schema:PropertyValue
    58 Ne0062b2dddeb48faa319556b4537df1c schema:author Na680c0af06d74c7f85068f5b797e5c38
    59 schema:ratingValue 0.3700000047683716
    60 rdf:type schema:Rating
     




    Preview window. Press ESC to close (or click here)


    ...