http://scigraph.springernature.com/journal.1041853
ISSN1384-5810 | 1573-756X
DIMENSIONShttps://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1041853
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"contentRating": [
{
"author": "snip",
"ratingValue": "2.7260000705718994",
"type": "Rating"
},
{
"author": "sjr",
"ratingValue": "0.9750000238418579",
"type": "Rating"
}
],
"description": "The premier technical publication in the field, Data Mining and Knowledge Discovery is a resource collecting relevant common methods and techniques and a forum for unifying the diverse constituent research communities.
\nThe journal publishes original technical papers in both the research and practice of data mining and knowledge discovery, surveys and tutorials of important areas and techniques, and detailed descriptions of significant applications.
\nCoverage includes:
\n- Theory and Foundational Issues
\n- Data Mining Methods
\n- Algorithms for Data Mining
\n- Knowledge Discovery Process
\n- Application Issues.
",
"editor": [
{
"familyName": "F\u00fcrnkranz",
"givenName": "Johannes",
"type": "Person"
}
],
"id": "sg:journal.1041853",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"issn": [
"1384-5810",
"1573-756X"
],
"license": "Hybrid",
"name": "Data Mining and Knowledge Discovery",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"41853"
]
},
{
"name": "lccn_id",
"type": "PropertyValue",
"value": [
"sn 98038132"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101512456"
]
},
{
"name": "nsd_ids_id",
"type": "PropertyValue",
"value": [
"439787"
]
},
{
"name": "era_ids_id",
"type": "PropertyValue",
"value": [
"17829"
]
}
],
"publisher": {
"name": "Springer US",
"type": "Organization"
},
"publisherImprint": "Springer",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1041853"
],
"sdDataset": "journals",
"sdDatePublished": "2022-05-20T07:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/journal/journal_0.jsonl",
"startYear": "1997",
"type": "Periodical",
"url": "https://link.springer.com/journal/10618"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1041853'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1041853'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1041853'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1041853'
This table displays all metadata directly associated to this object as RDF triples.
60 TRIPLES
20 PREDICATES
27 URIs
23 LITERALS
10 BLANK NODES