Journal of Mathematical Imaging and Vision View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

1991

PUBLISHER

Springer US

LANGUAGE

en

HOMEPAGE

https://link.springer.com/journal/10851

Recent publications latest 20 shown

  • 2022-05-14 Learning Grayscale Mathematical Morphology with Smooth Morphological Layers
  • 2022-05-11 Characterization of hv-Convex Sequences
  • 2022-05-06 Variational Formulation of Dark Channel Prior for Single Image Dehazing
  • 2022-05-06 State Estimation of Time-Varying MRI with Radial Golden Angle Sampling
  • 2022-04-29 On Convergence of the Arrow–Hurwicz Method for Saddle Point Problems
  • 2022-04-27 Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
  • 2022-04-27 Irregularity Index for Vector-Valued Morphological Operators
  • 2022-04-23 Automated Image Restoration and Segmentation Using Mumford–Shah-Like Regularization and Topological Asymptotic Expansion
  • 2022-04-15 Conditionally Exponential Prior in Focal Near- and Far-Field EEG Source Localization via Randomized Multiresolution Scanning (RAMUS)
  • 2022-04-13 Deep Convolutional Neural Networks with Spatial Regularization, Volume and Star-Shape Priors for Image Segmentation
  • 2022-04-13 PCA-AE: Principal Component Analysis Autoencoder for Organising the Latent Space of Generative Networks
  • 2022-04-12 An Improved Minimum-Distance Texture Estimator for Speckled Data Under the G0 Model
  • 2022-04-12 Fast Quaternion Log-Polar Radial Harmonic Fourier Moments for Color Image Zero-Watermarking
  • 2022-04-11 Scale-Invariant Scale-Channel Networks: Deep Networks That Generalise to Previously Unseen Scales
  • 2022-04-11 An Alternative Definition for Digital Convexity
  • 2022-04-07 On the Reconstruction of 3-Uniform Hypergraphs from Degree Sequences of Span-Two
  • 2022-04-07 Toward a Sparsity Theory on Weighted Lattices
  • 2022-04-06 A Tighter Relaxation for the Relative Pose Problem Between Cameras
  • 2022-04-04 High-Resolution Neural Texture Synthesis with Long-Range Constraints
  • 2022-03-28 Eigenbackground Revisited: Can We Model the Background with Eigenvectors?
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.1440000534057617", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.5040000081062317", 
            "type": "Rating"
          }
        ], 
        "description": "

    Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. Emphasizing the role of mathematics as a rigorous basis for imaging science, this journal details innovative or established mathematical techniques applied to vision and imaging problems in a novel way. It also reports on new developments and problems in mathematics arising from these applications.

    \n\n

    The scope of Journal of Mathematical Imaging and Vision includes:

    \n\n

    - computational models of vision; imaging algebra and mathematical morphology

    \n\n

    - mathematical methods in reconstruction, compactification, and coding

    \n\n

    - filter theory

    \n\n

    - probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science

    \n\n

    - inverse optics

    \n\n

    - wave theory.

    \n\n

    This journal contains research articles, invited papers, and expository articles.

    \n", "editor": [ { "familyName": "Weickert", "givenName": "Joachim", "type": "Person" } ], "id": "sg:journal.1041815", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "0924-9907", "1573-7683" ], "license": "Hybrid", "name": "Journal of Mathematical Imaging and Vision", "productId": [ { "name": "dimensions_id", "type": "PropertyValue", "value": [ "41815" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "93649040" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101512096" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "443286" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "257" ] } ], "publisher": { "name": "Springer US", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1041815" ], "sdDataset": "journals", "sdDatePublished": "2022-05-20T07:52", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/journal/journal_0.jsonl", "startYear": "1991", "type": "Periodical", "url": "https://link.springer.com/journal/10851" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1041815'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1041815'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1041815'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1041815'


     

    This table displays all metadata directly associated to this object as RDF triples.

    60 TRIPLES      20 PREDICATES      27 URIs      23 LITERALS      10 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1041815 schema:contentRating N122ab3f3a1d64cfcbcf2415bc412f85e
    2 N9cf73c326e4b4d73908db14ccf694b8d
    3 schema:description <p>Current developments in new image processing hardware, the advent of multisensor data fusion, and rapid advances in vision research have led to an explosive growth in the interdisciplinary field of imaging science. Emphasizing the role of mathematics as a rigorous basis for imaging science, this journal details innovative or established mathematical techniques applied to vision and imaging problems in a novel way. It also reports on new developments and problems in mathematics arising from these applications.</p> <p>The scope of Journal of Mathematical Imaging and Vision includes:</p> <p>- computational models of vision; imaging algebra and mathematical morphology</p> <p>- mathematical methods in reconstruction, compactification, and coding</p> <p>- filter theory</p> <p>- probabilistic, statistical, geometric, topological, and fractal techniques and models in imaging science</p> <p>- inverse optics</p> <p>- wave theory.</p> <p>This journal contains research articles, invited papers, and expository articles.</p>
    4 schema:editor Nbeed64e0733245d580c16f8e3f80a1c8
    5 schema:inLanguage en
    6 schema:isAccessibleForFree false
    7 schema:issn 0924-9907
    8 1573-7683
    9 schema:license Hybrid
    10 schema:name Journal of Mathematical Imaging and Vision
    11 schema:productId N43b91230d083494b83eb90dc66e8b0bd
    12 N65d0f92133d74543bb7ecab9c2875023
    13 N8620819411914834982919f958023ad4
    14 N96b915514f0d458b87a2c29c6f9ce151
    15 Nc12bfebc3ed644649e5a0e6d497c38fc
    16 schema:publisher N3f7b20fbb20c41c39d25fb71b61ddd7e
    17 schema:publisherImprint Springer
    18 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1041815
    19 schema:sdDatePublished 2022-05-20T07:52
    20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    21 schema:sdPublisher Ncefc97021f9942caa6c20874ab1d3a27
    22 schema:startYear 1991
    23 schema:url https://link.springer.com/journal/10851
    24 sgo:license sg:explorer/license/
    25 sgo:sdDataset journals
    26 rdf:type schema:Periodical
    27 N122ab3f3a1d64cfcbcf2415bc412f85e schema:author Ned0eaf0d9a804186a6375a58e1f26acd
    28 schema:ratingValue 0.5040000081062317
    29 rdf:type schema:Rating
    30 N3f7b20fbb20c41c39d25fb71b61ddd7e schema:name Springer US
    31 rdf:type schema:Organization
    32 N43b91230d083494b83eb90dc66e8b0bd schema:name nlm_unique_id
    33 schema:value 101512096
    34 rdf:type schema:PropertyValue
    35 N65d0f92133d74543bb7ecab9c2875023 schema:name era_ids_id
    36 schema:value 257
    37 rdf:type schema:PropertyValue
    38 N8620819411914834982919f958023ad4 schema:name lccn_id
    39 schema:value 93649040
    40 rdf:type schema:PropertyValue
    41 N934e65d1a8374cd1b77fb581a2e3b766 rdf:first snip
    42 rdf:rest rdf:nil
    43 N96b915514f0d458b87a2c29c6f9ce151 schema:name dimensions_id
    44 schema:value 41815
    45 rdf:type schema:PropertyValue
    46 N9cf73c326e4b4d73908db14ccf694b8d schema:author N934e65d1a8374cd1b77fb581a2e3b766
    47 schema:ratingValue 1.1440000534057617
    48 rdf:type schema:Rating
    49 N9f49d0ad40dc4b1197629889686e8d54 schema:familyName Weickert
    50 schema:givenName Joachim
    51 rdf:type schema:Person
    52 Nbeed64e0733245d580c16f8e3f80a1c8 rdf:first N9f49d0ad40dc4b1197629889686e8d54
    53 rdf:rest rdf:nil
    54 Nc12bfebc3ed644649e5a0e6d497c38fc schema:name nsd_ids_id
    55 schema:value 443286
    56 rdf:type schema:PropertyValue
    57 Ncefc97021f9942caa6c20874ab1d3a27 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 Ned0eaf0d9a804186a6375a58e1f26acd rdf:first sjr
    60 rdf:rest rdf:nil
     




    Preview window. Press ESC to close (or click here)


    ...