Statistics in Biosciences View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

2009

PUBLISHER

Springer US

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/12561

Recent publications latest 20 shown

  • 2019-04-12 Modeling Temporal Variation in Physical Activity Using Functional Principal Components Analysis
  • 2019-04-10 Editorial for the Special Issue Challenges in Computational Neuroscience
  • 2019-04-05 Calibrating Variations in Biomarker Measures for Improving Prediction with Time-to-event Outcomes
  • 2019-03-21 Bayesian Sensitivity Analysis for Non-ignorable Missing Data in Longitudinal Studies
  • 2019-03-06 An Efficient Nonparametric Estimate for Spatially Correlated Functional Data
  • 2019-02-12 Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials
  • 2019-02-11 Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data
  • 2019-02-09 Organizing and Analyzing the Activity Data in NHANES
  • 2019-01-12 Accelerometry Data in Health Research: Challenges and Opportunities
  • 2019-01-05 Measuring Variability in Rest-Activity Rhythms from Actigraphy with Application to Characterizing Symptoms of Depression
  • 2019-01-05 Practical Considerations for Data Collection and Management in Mobile Health Micro-randomized Trials
  • 2018-12-07 Functional Data Analyses of Gait Data Measured Using In-Shoe Sensors
  • 2018-12 Joint Modeling of Multivariate Longitudinal Data and Competing Risks Using Multiphase Sub-models
  • 2018-12 Estimation of a Concordance Probability for Doubly Censored Time-to-Event Data
  • 2018-12 Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models
  • 2018-12 Tucker Tensor Regression and Neuroimaging Analysis
  • 2018-12 Assessment of Noninferiority (and Equivalence) for Simple Crossover Trials Using Bayesian Approach
  • 2018-12 A Joint Modeling Approach for Longitudinal Data with Informative Observation Times and a Terminal Event
  • 2018-12 Conditional Regression Based on a Multivariate Zero-Inflated Logistic-Normal Model for Microbiome Relative Abundance Data
  • 2018-12 Empirical Bayes Estimation and Prediction Using Summary-Level Information From External Big Data Sources Adjusting for Violations of Transportability
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/S17030", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Statistics for Life Sciences, Medicine, Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/L15020", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Biostatistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/L19147", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Theoretical Ecology/Statistics", 
            "type": "DefinedTerm"
          }
        ], 
        "alternateName": "Journal of the International Chinese Statistical Association", 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "0.511", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.707", 
            "type": "Rating"
          }
        ], 
        "description": "

    Statistics in Biosciences (SIB) is published twice a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science.

    SIB publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. Original Articles publish novel statistical and quantitative methods in biosciences. The Bioscience Case Studies and Practice Articles publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. Review Articles publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. Commentaries provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in SIB share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences.

    ", "editor": [ { "familyName": "Li", "givenName": "Hongzhe", "type": "Person" } ], "id": "sg:journal.1041137", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "1867-1764", "1867-1772" ], "license": "Hybrid (Open Choice)", "name": "Statistics in Biosciences", "productId": [ { "name": "scopus_id", "type": "PropertyValue", "value": [ "19400158517" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "1867-1764/STATISTICS IN BIOSCIENCES" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101498115" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "12561" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "2009243675" ] }, { "name": "dimensions_id", "type": "PropertyValue", "value": [ "41137" ] } ], "publisher": { "name": "Springer US", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1041137" ], "sdDataset": "journals", "sdDatePublished": "2019-03-18T11:05", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///home/ubuntu/piotr/scigraph_export/journals_20190313_sn_only.jsonl", "startYear": "2009", "type": "Periodical", "url": "http://link.springer.com/journal/12561" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1041137'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1041137'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1041137'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1041137'


     

    This table displays all metadata directly associated to this object as RDF triples.

    77 TRIPLES      22 PREDICATES      32 URIs      25 LITERALS      11 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1041137 schema:about sg:ontologies/product-market-codes/L15020
    2 sg:ontologies/product-market-codes/L19147
    3 sg:ontologies/product-market-codes/S17030
    4 schema:alternateName Journal of the International Chinese Statistical Association
    5 schema:contentRating N6268a09636684a998fff3e9218c91835
    6 Nc1e68970a81e4dc6a4922043ee943bf6
    7 schema:description <p><i>Statistics in Biosciences</i> (<i>SIB</i>) is published twice a year in print and electronic form. It aims at development and application of statistical methods and their interface with other quantitative methods, such as computational and mathematical methods, in biological and life science, health science, and biopharmaceutical and biotechnological science. </p><p/><p><i>SIB</i> publishes scientific papers and review articles in four sections, with the first two sections as the primary sections. <i>Original Articles</i> publish novel statistical and quantitative methods in biosciences. The Bioscience <i>Case Studies and Practice Articles</i> publish papers that advance statistical practice in biosciences, such as case studies, innovative applications of existing methods that further understanding of subject-matter science, evaluation of existing methods and data sources. <i>Review Articles</i> publish papers that review an area of statistical and quantitative methodology, software, and data sources in biosciences. <i>Commentaries</i> provide perspectives of research topics or policy issues that are of current quantitative interest in biosciences, reactions to an article published in the journal, and scholarly essays. Substantive science is essential in motivating and demonstrating the methodological development and use for an article to be acceptable. Articles published in <i>SIB </i>share the goal of promoting evidence-based real world practice and policy making through effective and timely interaction and communication of statisticians and quantitative researchers with subject-matter scientists in biosciences. </p>
    8 schema:editor Na354f274a80146559dcddb8af165217a
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:issn 1867-1764
    12 1867-1772
    13 schema:license Hybrid (Open Choice)
    14 schema:name Statistics in Biosciences
    15 schema:productId N63fd12b5ddf749fd843bfedc7f973523
    16 N67b10c3110c648b5bc0a22d96736dcd9
    17 N719ff0d060a940d5aff6b493eaccf9ad
    18 Nec5d72049d7040b5b9ca60a884d16e0b
    19 Nf3fe858fbf4a40f2a02a31373ec6f0d5
    20 Nf514008f8d6545958500662777b75364
    21 schema:publisher N9c11da19e3ea403e9c270bd87ad0c370
    22 schema:publisherImprint Springer
    23 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1041137
    24 schema:sdDatePublished 2019-03-18T11:05
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Nb68970f443d040d089b690e35a48254b
    27 schema:startYear 2009
    28 schema:url http://link.springer.com/journal/12561
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset journals
    31 rdf:type schema:Periodical
    32 N6268a09636684a998fff3e9218c91835 schema:author N924c7f6e33284c8eb90b4df4f4f13a10
    33 schema:ratingValue 0.707
    34 rdf:type schema:Rating
    35 N63fd12b5ddf749fd843bfedc7f973523 schema:name nlm_unique_id
    36 schema:value 101498115
    37 rdf:type schema:PropertyValue
    38 N67b10c3110c648b5bc0a22d96736dcd9 schema:name wos_id
    39 schema:value 1867-1764/STATISTICS IN BIOSCIENCES
    40 rdf:type schema:PropertyValue
    41 N719ff0d060a940d5aff6b493eaccf9ad schema:name dimensions_id
    42 schema:value 41137
    43 rdf:type schema:PropertyValue
    44 N7b2adf07227941c1a53e7bb5aae64031 rdf:first snip
    45 rdf:rest rdf:nil
    46 N924c7f6e33284c8eb90b4df4f4f13a10 rdf:first sjr
    47 rdf:rest rdf:nil
    48 N9c11da19e3ea403e9c270bd87ad0c370 schema:name Springer US
    49 rdf:type schema:Organization
    50 Na354f274a80146559dcddb8af165217a rdf:first Nd3998432ee69456c876f35a673cc6af9
    51 rdf:rest rdf:nil
    52 Nb68970f443d040d089b690e35a48254b schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 Nc1e68970a81e4dc6a4922043ee943bf6 schema:author N7b2adf07227941c1a53e7bb5aae64031
    55 schema:ratingValue 0.511
    56 rdf:type schema:Rating
    57 Nd3998432ee69456c876f35a673cc6af9 schema:familyName Li
    58 schema:givenName Hongzhe
    59 rdf:type schema:Person
    60 Nec5d72049d7040b5b9ca60a884d16e0b schema:name lccn_id
    61 schema:value 2009243675
    62 rdf:type schema:PropertyValue
    63 Nf3fe858fbf4a40f2a02a31373ec6f0d5 schema:name springer_id
    64 schema:value 12561
    65 rdf:type schema:PropertyValue
    66 Nf514008f8d6545958500662777b75364 schema:name scopus_id
    67 schema:value 19400158517
    68 rdf:type schema:PropertyValue
    69 sg:ontologies/product-market-codes/L15020 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    70 schema:name Biostatistics
    71 rdf:type schema:DefinedTerm
    72 sg:ontologies/product-market-codes/L19147 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    73 schema:name Theoretical Ecology/Statistics
    74 rdf:type schema:DefinedTerm
    75 sg:ontologies/product-market-codes/S17030 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    76 schema:name Statistics for Life Sciences, Medicine, Health Sciences
    77 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...