Evolutionary Intelligence View Homepage


Ontology type: schema:Periodical     


Journal Info

START YEAR

2008

PUBLISHER

Springer Berlin Heidelberg

LANGUAGE

en

HOMEPAGE

http://link.springer.com/journal/12065

Recent publications latest 20 shown

  • 2019-04-10 An augmented animal migration optimization algorithm using worst solution elimination approach in the backdrop of differential evolution
  • 2019-04-06 Structure optimization method based on automatic vectorization
  • 2019-04-03 Analysis of evolutionary process of fog computing system based on BA and ER network hybrid model
  • 2019-04-01 Categorization of Intercloud users and auto-scaling of resources
  • 2019-03-23 A new meta-heuristic algorithm based on chemical reactions for partitional clustering problems
  • 2019-03-15 Prediction of forest unit volume based on hybrid feature selection and ensemble learning
  • 2019-03-07 Deluge based Genetic Algorithm for feature selection
  • 2019-03-02 Differential evolution algorithm tuned tilt integral derivative controller with filter controller for automatic generation control
  • 2019-03 Optimized regularized linear discriminant analysis for feature extraction in face recognition
  • 2019-03 An optimal PID controller for a biped robot walking on flat terrain using MCIWO algorithms
  • 2019-03 A movable damped wave algorithm for solving global optimization problems
  • 2019-03 The Anglerfish algorithm: a derivation of randomized incremental construction technique for solving the traveling salesman problem
  • 2019-02-22 Automated face retrieval using bag-of-features and sigmoidal grey wolf optimization
  • 2019-02-19 Hybrid optimizer for the travelling salesman problem
  • 2019-02-02 Incremental supervised learning: algorithms and applications in pattern recognition
  • 2019-01-24 A new evolutionary neural networks based on intrusion detection systems using locust swarm optimization
  • 2019-01-11 Voltage stability constrained transmission network expansion planning using fast convergent grey wolf optimization algorithm
  • 2019-01-09 Short-term electrical load forecasting method based on stacked auto-encoding and GRU neural network
  • 2019-01-07 Multi-objective three level parallel PSO algorithm for structural alignment of complex RNA sequences
  • 2018-12-05 Software fault classification using extreme learning machine: a cognitive approach
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T11006", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Mathematical and Computational Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/I21000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Artificial Intelligence", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/P19090", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Statistical Physics and Dynamical Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/T19000", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Control, Robotics, Mechatronics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/L15001", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Bioinformatics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://scigraph.springernature.com/ontologies/product-market-codes/M13003", 
            "inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/", 
            "name": "Applications of Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "contentRating": [
          {
            "author": "snip", 
            "ratingValue": "1.064", 
            "type": "Rating"
          }, 
          {
            "author": "sjr", 
            "ratingValue": "0.28", 
            "type": "Rating"
          }
        ], 
        "description": "

    Evolutionary Intelligence is the place to discover advances in the field of evolutionary intelligence. The journal is devoted to the timely publication and dissemination of both the theoretical and practical aspects of population-based searches for artificial intelligence.

    \n

    Among the techniques covered are rule-based systems, artificial neural networks, fuzzy systems, Bayesian and statistical approaches, artificial immune systems, and hybrid systems combining evolutionary computation with other artificial intelligence techniques.

    \n

    A partial list of topics includes memory, vision, planning, knowledge representation and construction, robotics, neuroscience, language, development and learning, and cognitive science. Readers will also find papers describing applications in such areas as data mining, adaptive control, medical and bioinformatics, games and multi-media, agent-based computing and modeling, complex systems, and chemical and biological systems.

    ", "editor": [ { "familyName": "Bull", "givenName": "Larry", "type": "Person" } ], "id": "sg:journal.1040111", "inLanguage": [ "en" ], "isAccessibleForFree": false, "issn": [ "1864-5909", "1864-5917" ], "license": "Hybrid (Open Choice)", "name": "Evolutionary Intelligence", "productId": [ { "name": "dimensions_id", "type": "PropertyValue", "value": [ "40111" ] }, { "name": "springer_id", "type": "PropertyValue", "value": [ "12065" ] }, { "name": "lccn_id", "type": "PropertyValue", "value": [ "2009243155" ] }, { "name": "wos_id", "type": "PropertyValue", "value": [ "1864-5909/EVOLUTIONARY INTELLIGENCE" ] }, { "name": "scopus_id", "type": "PropertyValue", "value": [ "14500154734" ] }, { "name": "nlm_unique_id", "type": "PropertyValue", "value": [ "101475575" ] }, { "name": "nsd_ids_id", "type": "PropertyValue", "value": [ "480504" ] }, { "name": "era_ids_id", "type": "PropertyValue", "value": [ "41633" ] } ], "publisher": { "name": "Springer Berlin Heidelberg", "type": "Organization" }, "publisherImprint": "Springer", "sameAs": [ "https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1040111" ], "sdDataset": "journals", "sdDatePublished": "2021-01-20T04:59", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "file:///pack/app/journals_20190313_sn_only.jsonl", "startYear": "2008", "type": "Periodical", "url": "http://link.springer.com/journal/12065" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1040111'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1040111'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1040111'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1040111'


     

    This table displays all metadata directly associated to this object as RDF triples.

    96 TRIPLES      21 PREDICATES      36 URIs      26 LITERALS      13 BLANK NODES

    Subject Predicate Object
    1 sg:journal.1040111 schema:about sg:ontologies/product-market-codes/I21000
    2 sg:ontologies/product-market-codes/L15001
    3 sg:ontologies/product-market-codes/M13003
    4 sg:ontologies/product-market-codes/P19090
    5 sg:ontologies/product-market-codes/T11006
    6 sg:ontologies/product-market-codes/T19000
    7 schema:contentRating N055bce44de58486288465d44abb8b9d8
    8 Nfb2620613c57481887294848af490949
    9 schema:description <P>Evolutionary Intelligence is the place to discover advances in the field of evolutionary intelligence. The journal is devoted to the timely publication and dissemination of both the theoretical and practical aspects of population-based searches for artificial intelligence.</P> <P>Among the techniques covered are rule-based systems, artificial neural networks, fuzzy systems, Bayesian and statistical approaches, artificial immune systems, and hybrid systems combining evolutionary computation with other artificial intelligence techniques.</P> <P>A partial list of topics includes memory, vision, planning, knowledge representation and construction, robotics, neuroscience, language, development and learning, and cognitive science. Readers will also find papers describing applications in such areas as data mining, adaptive control, medical and bioinformatics, games and multi-media, agent-based computing and modeling, complex systems, and chemical and biological systems.</P>
    10 schema:editor Ncf23875480884d9fac74f9056c366f75
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:issn 1864-5909
    14 1864-5917
    15 schema:license Hybrid (Open Choice)
    16 schema:name Evolutionary Intelligence
    17 schema:productId N0655a527ea754b61a35ed6e76fd69416
    18 N19b2ff5b455e4853bfef17d025c67147
    19 N406d014b08804181bab0effeeb671d92
    20 N55f3cb3a481f42e4a5d2c96ab6c5ed8e
    21 N899274527694405e92fa40e6ca2d3f69
    22 N92f657e4799a45fcb9379a03bb85a397
    23 N94676b5f0cc848999596e94c521b45ff
    24 Ne385aed041aa4b79a615346731687398
    25 schema:publisher N4cdc856a25b44d6ea88ef44c293d3c84
    26 schema:publisherImprint Springer
    27 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1040111
    28 schema:sdDatePublished 2021-01-20T04:59
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher N0a1f2bc85c7a4a8597e4b575def967c1
    31 schema:startYear 2008
    32 schema:url http://link.springer.com/journal/12065
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset journals
    35 rdf:type schema:Periodical
    36 N030de845d6fa4e72811e3dabe64cadd8 schema:familyName Bull
    37 schema:givenName Larry
    38 rdf:type schema:Person
    39 N055bce44de58486288465d44abb8b9d8 schema:author Nf3fd45096156420c9893ed150793d24c
    40 schema:ratingValue 0.28
    41 rdf:type schema:Rating
    42 N0655a527ea754b61a35ed6e76fd69416 schema:name era_ids_id
    43 schema:value 41633
    44 rdf:type schema:PropertyValue
    45 N0a1f2bc85c7a4a8597e4b575def967c1 schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 N19b2ff5b455e4853bfef17d025c67147 schema:name wos_id
    48 schema:value 1864-5909/EVOLUTIONARY INTELLIGENCE
    49 rdf:type schema:PropertyValue
    50 N406d014b08804181bab0effeeb671d92 schema:name nsd_ids_id
    51 schema:value 480504
    52 rdf:type schema:PropertyValue
    53 N4cdc856a25b44d6ea88ef44c293d3c84 schema:name Springer Berlin Heidelberg
    54 rdf:type schema:Organization
    55 N55f3cb3a481f42e4a5d2c96ab6c5ed8e schema:name springer_id
    56 schema:value 12065
    57 rdf:type schema:PropertyValue
    58 N74c37204819345aa88ed7345aa9a43b9 rdf:first snip
    59 rdf:rest rdf:nil
    60 N899274527694405e92fa40e6ca2d3f69 schema:name nlm_unique_id
    61 schema:value 101475575
    62 rdf:type schema:PropertyValue
    63 N92f657e4799a45fcb9379a03bb85a397 schema:name dimensions_id
    64 schema:value 40111
    65 rdf:type schema:PropertyValue
    66 N94676b5f0cc848999596e94c521b45ff schema:name lccn_id
    67 schema:value 2009243155
    68 rdf:type schema:PropertyValue
    69 Ncf23875480884d9fac74f9056c366f75 rdf:first N030de845d6fa4e72811e3dabe64cadd8
    70 rdf:rest rdf:nil
    71 Ne385aed041aa4b79a615346731687398 schema:name scopus_id
    72 schema:value 14500154734
    73 rdf:type schema:PropertyValue
    74 Nf3fd45096156420c9893ed150793d24c rdf:first sjr
    75 rdf:rest rdf:nil
    76 Nfb2620613c57481887294848af490949 schema:author N74c37204819345aa88ed7345aa9a43b9
    77 schema:ratingValue 1.064
    78 rdf:type schema:Rating
    79 sg:ontologies/product-market-codes/I21000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    80 schema:name Artificial Intelligence
    81 rdf:type schema:DefinedTerm
    82 sg:ontologies/product-market-codes/L15001 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    83 schema:name Bioinformatics
    84 rdf:type schema:DefinedTerm
    85 sg:ontologies/product-market-codes/M13003 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    86 schema:name Applications of Mathematics
    87 rdf:type schema:DefinedTerm
    88 sg:ontologies/product-market-codes/P19090 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    89 schema:name Statistical Physics and Dynamical Systems
    90 rdf:type schema:DefinedTerm
    91 sg:ontologies/product-market-codes/T11006 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    92 schema:name Mathematical and Computational Engineering
    93 rdf:type schema:DefinedTerm
    94 sg:ontologies/product-market-codes/T19000 schema:inDefinedTermSet sg:ontologies/product-market-codes/
    95 schema:name Control, Robotics, Mechatronics
    96 rdf:type schema:DefinedTerm
     




    Preview window. Press ESC to close (or click here)


    ...