http://scigraph.springernature.com/journal.1039678
ISSN1936-5802 | 1936-5810
DIMENSIONShttps://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1039678
SCOPUS
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://scigraph.springernature.com/ontologies/product-market-codes/C15001",
"inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/",
"name": "Food Science",
"type": "DefinedTerm"
},
{
"id": "http://scigraph.springernature.com/ontologies/product-market-codes/B18006",
"inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/",
"name": "Neurosciences",
"type": "DefinedTerm"
},
{
"id": "http://scigraph.springernature.com/ontologies/product-market-codes/H33140",
"inDefinedTermSet": "http://scigraph.springernature.com/ontologies/product-market-codes/",
"name": "Clinical Nutrition",
"type": "DefinedTerm"
}
],
"contentRating": [
{
"author": "snip",
"ratingValue": "0.701",
"type": "Rating"
},
{
"author": "sjr",
"ratingValue": "0.581",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2017",
"ratingValue": "1.641",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2016",
"ratingValue": "1.474",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2016",
"ratingValue": "1.474",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2015",
"ratingValue": "1.053",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2015",
"ratingValue": "1.053",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2014",
"ratingValue": "1.302",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2014",
"ratingValue": "1.302",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2013",
"ratingValue": "1.365",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2013",
"ratingValue": "1.365",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2009",
"ratingValue": "1.000",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2012",
"ratingValue": "1.317",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2012",
"ratingValue": "1.317",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2011",
"ratingValue": "1.643",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2011",
"ratingValue": "1.643",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2010",
"ratingValue": "1.091",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2010",
"ratingValue": "1.091",
"type": "Rating"
},
{
"author": "impact_factor_wos",
"dateCreated": "2009",
"ratingValue": "1.000",
"type": "Rating"
}
],
"description": "Chemosensory Perception publishes original research, original data reports (such as GC-O spectra, or gene deorphanization results), and review papers covering the connection between chemical, sensory, and neurological sciences. It features interdisciplinary work that links these areas together.
Coverage in Chemosensory Perception includes animal work with implications for human phenomena and explores the following areas:
- Identification of chemicals producing sensory response
- Identification of sensory response associated with chemicals
- Human in vivo response to chemical stimuli
- Human in vitro response to chemical stimuli
- Neuroimaging of chemosensory function
- Neurological processing of chemoreception
- Chemoreception mechanisms
- Psychophysics of chemoperception
- Trigeminal function
- Multisensory perception
- Contextual effect on chemo-perception
- Behavioral response to chemical stimuli
- Physiological factors effecting and contributing to chemo-perception
- Flavor and hedonics
- Memory and chemo-perception
",
"editor": [
{
"familyName": "Delwiche",
"givenName": "Jeannine",
"type": "Person"
}
],
"id": "sg:journal.1039678",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"issn": [
"1936-5802",
"1936-5810"
],
"license": "Hybrid (Open Choice)",
"name": "Chemosensory Perception",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"39678"
]
},
{
"name": "springer_id",
"type": "PropertyValue",
"value": [
"12078"
]
},
{
"name": "lccn_id",
"type": "PropertyValue",
"value": [
"2007214303"
]
},
{
"name": "wos_id",
"type": "PropertyValue",
"value": [
"1936-5802/CHEMOSENSORY PERCEPTION"
]
},
{
"name": "scopus_id",
"type": "PropertyValue",
"value": [
"15500154711"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101467007"
]
},
{
"name": "nsd_ids_id",
"type": "PropertyValue",
"value": [
"483692"
]
}
],
"publisher": {
"name": "Springer US",
"type": "Organization"
},
"publisherImprint": "Springer",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_source_title=jour.1039678"
],
"sdDataset": "journals",
"sdDatePublished": "2021-01-20T04:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "file:///pack/app/journals_20190313_sn_only.jsonl",
"startYear": "2008",
"type": "Periodical",
"url": "http://link.springer.com/journal/12078"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/journal.1039678'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/journal.1039678'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/journal.1039678'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/journal.1039678'
This table displays all metadata directly associated to this object as RDF triples.
199 TRIPLES
21 PREDICATES
49 URIs
42 LITERALS
29 BLANK NODES