Combining design, sphere, and unitary design View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2019-2021

FUNDING AMOUNT

230000.0 CNY

ABSTRACT

Design theory is one of the important area in algebraic combinatorics. It deals with the existence problem and construction of finite sets which approximate the whole set. Adopting representation theory of finite groups, harmonic analysis on association schemes and spheres, as well as quantum information theory, this project will investigate designs on association schemes, spheres and unitary groups. More specifically, it will investigate the property of relative t-designs in P- and Q-polynomial association schemes, especially in Hamming association schemes and Johnson association schemes, classification of almost tight spherical t-designs, existence of tight complex spherical t-designs, construction of unitary t-designs and the application in quantum information theory. This project is significant both in theories and applications. On the one hand, it will provide effective mathematical methods to study quantum information. On the other hand, it extends the fields of design theory. More... »

URL

https://kd.nsfc.gov.cn/finalDetails?id=bb0d923d1b0c3d0e0a0a8f15c8e7dac2

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/49", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/33", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/40", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/46", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "amount": {
      "currency": "CNY", 
      "type": "MonetaryAmount", 
      "value": 230000.0
    }, 
    "description": "Design theory is one of the important area in algebraic combinatorics. It deals with the existence problem and construction of finite sets which approximate the whole set. Adopting representation theory of finite groups, harmonic analysis on association schemes and spheres, as well as quantum information theory, this project will investigate designs on association schemes, spheres and unitary groups. More specifically, it will investigate the property of relative t-designs in P- and Q-polynomial association schemes, especially in Hamming association schemes and Johnson association schemes, classification of almost tight spherical t-designs, existence of tight complex spherical t-designs, construction of unitary t-designs and the application in quantum information theory. This project is significant both in theories and applications. On the one hand, it will provide effective mathematical methods to study quantum information. On the other hand, it extends the fields of design theory.", 
    "endDate": "2021-12-31", 
    "funder": {
      "id": "http://www.grid.ac/institutes/grid.419696.5", 
      "type": "Organization"
    }, 
    "id": "sg:grant.8892450", 
    "identifier": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "grant.8892450"
        ]
      }, 
      {
        "name": "nsfc_id", 
        "type": "PropertyValue", 
        "value": [
          "11801353"
        ]
      }
    ], 
    "keywords": [
      "quantum information theory", 
      "association scheme", 
      "information theory", 
      "t-designs", 
      "effective mathematical method", 
      "spherical t-designs", 
      "unitary t-designs", 
      "Q-polynomial association schemes", 
      "Hamming association scheme", 
      "algebraic combinatorics", 
      "representation theory", 
      "mathematical methods", 
      "finite group", 
      "unitary group", 
      "existence problem", 
      "finite set", 
      "unitary designs", 
      "quantum information", 
      "harmonic analysis", 
      "design theory", 
      "relative t-designs", 
      "tight spherical t-designs", 
      "theory", 
      "scheme", 
      "whole set", 
      "combinatorics", 
      "set", 
      "sphere", 
      "applications", 
      "existence", 
      "problem", 
      "field", 
      "construction", 
      "design", 
      "properties", 
      "important area", 
      "analysis", 
      "hand", 
      "information", 
      "classification", 
      "project", 
      "area", 
      "group", 
      "method"
    ], 
    "name": "Combining design, sphere, and unitary design", 
    "recipient": [
      {
        "id": "http://www.grid.ac/institutes/grid.267139.8", 
        "type": "Organization"
      }, 
      {
        "affiliation": {
          "id": "http://www.grid.ac/institutes/None", 
          "name": "University of Shanghai for Science and Technology", 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Yan", 
        "id": "sg:person.013552460547.85", 
        "type": "Person"
      }, 
      {
        "member": "sg:person.013552460547.85", 
        "roleName": "PI", 
        "type": "Role"
      }
    ], 
    "sameAs": [
      "https://app.dimensions.ai/details/grant/grant.8892450"
    ], 
    "sdDataset": "grants", 
    "sdDatePublished": "2022-12-01T06:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/grant/grant_52.jsonl", 
    "startDate": "2019-01-01", 
    "type": "MonetaryGrant", 
    "url": "https://kd.nsfc.gov.cn/finalDetails?id=bb0d923d1b0c3d0e0a0a8f15c8e7dac2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.8892450'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.8892450'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.8892450'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.8892450'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      18 PREDICATES      68 URIs      57 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:grant.8892450 schema:about anzsrc-for:33
2 anzsrc-for:40
3 anzsrc-for:46
4 anzsrc-for:49
5 schema:amount N81d4c905aa9f4fc4816d7c7f20905a0e
6 schema:description Design theory is one of the important area in algebraic combinatorics. It deals with the existence problem and construction of finite sets which approximate the whole set. Adopting representation theory of finite groups, harmonic analysis on association schemes and spheres, as well as quantum information theory, this project will investigate designs on association schemes, spheres and unitary groups. More specifically, it will investigate the property of relative t-designs in P- and Q-polynomial association schemes, especially in Hamming association schemes and Johnson association schemes, classification of almost tight spherical t-designs, existence of tight complex spherical t-designs, construction of unitary t-designs and the application in quantum information theory. This project is significant both in theories and applications. On the one hand, it will provide effective mathematical methods to study quantum information. On the other hand, it extends the fields of design theory.
7 schema:endDate 2021-12-31
8 schema:funder grid-institutes:grid.419696.5
9 schema:identifier N79e9da6ced704edd94eb32c62ce206a3
10 Nd2b3bb2a52e044bfac4b1fcce7d00ccf
11 schema:keywords Hamming association scheme
12 Q-polynomial association schemes
13 algebraic combinatorics
14 analysis
15 applications
16 area
17 association scheme
18 classification
19 combinatorics
20 construction
21 design
22 design theory
23 effective mathematical method
24 existence
25 existence problem
26 field
27 finite group
28 finite set
29 group
30 hand
31 harmonic analysis
32 important area
33 information
34 information theory
35 mathematical methods
36 method
37 problem
38 project
39 properties
40 quantum information
41 quantum information theory
42 relative t-designs
43 representation theory
44 scheme
45 set
46 sphere
47 spherical t-designs
48 t-designs
49 theory
50 tight spherical t-designs
51 unitary designs
52 unitary group
53 unitary t-designs
54 whole set
55 schema:name Combining design, sphere, and unitary design
56 schema:recipient N17fde23a97c244a5aebfbb5992a7ea5c
57 sg:person.013552460547.85
58 grid-institutes:grid.267139.8
59 schema:sameAs https://app.dimensions.ai/details/grant/grant.8892450
60 schema:sdDatePublished 2022-12-01T06:58
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Ne7e8eae5152d4f48bfdc27cf0bac9fab
63 schema:startDate 2019-01-01
64 schema:url https://kd.nsfc.gov.cn/finalDetails?id=bb0d923d1b0c3d0e0a0a8f15c8e7dac2
65 sgo:license sg:explorer/license/
66 sgo:sdDataset grants
67 rdf:type schema:MonetaryGrant
68 N17fde23a97c244a5aebfbb5992a7ea5c schema:member sg:person.013552460547.85
69 schema:roleName PI
70 rdf:type schema:Role
71 N79e9da6ced704edd94eb32c62ce206a3 schema:name nsfc_id
72 schema:value 11801353
73 rdf:type schema:PropertyValue
74 N81d4c905aa9f4fc4816d7c7f20905a0e schema:currency CNY
75 schema:value 230000.0
76 rdf:type schema:MonetaryAmount
77 Nd2b3bb2a52e044bfac4b1fcce7d00ccf schema:name dimensions_id
78 schema:value grant.8892450
79 rdf:type schema:PropertyValue
80 Ne7e8eae5152d4f48bfdc27cf0bac9fab schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 anzsrc-for:33 schema:inDefinedTermSet anzsrc-for:
83 rdf:type schema:DefinedTerm
84 anzsrc-for:40 schema:inDefinedTermSet anzsrc-for:
85 rdf:type schema:DefinedTerm
86 anzsrc-for:46 schema:inDefinedTermSet anzsrc-for:
87 rdf:type schema:DefinedTerm
88 anzsrc-for:49 schema:inDefinedTermSet anzsrc-for:
89 rdf:type schema:DefinedTerm
90 sg:person.013552460547.85 schema:affiliation grid-institutes:None
91 schema:familyName Zhu
92 schema:givenName Yan
93 rdf:type schema:Person
94 grid-institutes:None schema:name University of Shanghai for Science and Technology
95 rdf:type schema:Organization
96 grid-institutes:grid.267139.8 schema:Organization
97 grid-institutes:grid.419696.5 schema:Organization
 




Preview window. Press ESC to close (or click here)


...