MEMS-based Intrafraction Motion Tracking for PET/CT and Radiotherapy (MINMOTION) View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2018-2021

FUNDING AMOUNT

499808.0 EUR

ABSTRACT

In this project, we will develop a new method for motion compensation and gating in PET/CT imaging and radiotherapy. Our approach is based on measuring motions from multiple locations in the upper body using several highly sensitive MEMS-based inertial measurement units (IMUs), and on fusing this information with that obtained from PET/CT scanners. The considered motion estimation approach is inexpensive and does not require large or fixed hardware. We believe that by processing information from multiple motion sensors allows estimating organ movements and quiescent phases more accurately than is possible with the currently used methods. More... »

URL

https://akareport.aka.fi/ibi_apps/WFServlet?IBIF_ex=x_HakKuvaus2&CLICKED_ON=&HAKNRO1=314483&UILANG=en&IBIAPP_app=aka_ext&TULOSTE=HTML

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "amount": {
      "currency": "EUR", 
      "type": "MonetaryAmount", 
      "value": 499808.0
    }, 
    "description": "In this project, we will develop a new method for motion compensation and gating in PET/CT imaging and radiotherapy. Our approach is based on measuring motions from multiple locations in the upper body using several highly sensitive MEMS-based inertial measurement units (IMUs), and on fusing this information with that obtained from PET/CT scanners. The considered motion estimation approach is inexpensive and does not require large or fixed hardware. We believe that by processing information from multiple  \nmotion sensors allows estimating organ movements and quiescent phases more accurately than is possible with the currently used methods.", 
    "endDate": "2021-12-31", 
    "funder": {
      "id": "http://www.grid.ac/institutes/grid.15098.35", 
      "type": "Organization"
    }, 
    "id": "sg:grant.8844214", 
    "identifier": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "grant.8844214"
        ]
      }, 
      {
        "name": "aka_id", 
        "type": "PropertyValue", 
        "value": [
          "314483"
        ]
      }
    ], 
    "inLanguage": [
      "en"
    ], 
    "keywords": [
      "inertial measurement unit", 
      "MEMS-based inertial measurement unit", 
      "motion estimation approach", 
      "measurement unit", 
      "motion tracking", 
      "motion compensation", 
      "motion sensors", 
      "estimation approach", 
      "MEMS", 
      "new method", 
      "sensors", 
      "multiple locations", 
      "tracking", 
      "motion", 
      "method", 
      "hardware", 
      "compensation", 
      "upper body", 
      "phase", 
      "approach", 
      "scanner", 
      "location", 
      "CT scanner", 
      "units", 
      "PET/CT scanner", 
      "information", 
      "organ movement", 
      "project", 
      "gating", 
      "imaging", 
      "movement", 
      "body", 
      "quiescent phase", 
      "CT imaging", 
      "PET/CT imaging", 
      "CT", 
      "PET/CT", 
      "radiotherapy"
    ], 
    "name": "MEMS-based Intrafraction Motion Tracking for PET/CT and Radiotherapy (MINMOTION)", 
    "recipient": [
      {
        "id": "http://www.grid.ac/institutes/grid.1374.1", 
        "type": "Organization"
      }, 
      {
        "affiliation": {
          "id": "http://www.grid.ac/institutes/None", 
          "name": "University of Turku", 
          "type": "Organization"
        }, 
        "familyName": "Lehtonen", 
        "givenName": "Eero", 
        "id": "sg:person.016707111625.02", 
        "type": "Person"
      }, 
      {
        "member": "sg:person.016707111625.02", 
        "roleName": "PI", 
        "type": "Role"
      }
    ], 
    "sameAs": [
      "https://app.dimensions.ai/details/grant/grant.8844214"
    ], 
    "sdDataset": "grants", 
    "sdDatePublished": "2022-06-01T22:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/grant/grant_12.jsonl", 
    "startDate": "2018-01-01", 
    "type": "MonetaryGrant", 
    "url": "https://akareport.aka.fi/ibi_apps/WFServlet?IBIF_ex=x_HakKuvaus2&CLICKED_ON=&HAKNRO1=314483&UILANG=en&IBIAPP_app=aka_ext&TULOSTE=HTML"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.8844214'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.8844214'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.8844214'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.8844214'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      19 PREDICATES      60 URIs      52 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:grant.8844214 schema:about anzsrc-for:08
2 schema:amount N41b7480e601e4237a2e3c640fc0ef2b8
3 schema:description In this project, we will develop a new method for motion compensation and gating in PET/CT imaging and radiotherapy. Our approach is based on measuring motions from multiple locations in the upper body using several highly sensitive MEMS-based inertial measurement units (IMUs), and on fusing this information with that obtained from PET/CT scanners. The considered motion estimation approach is inexpensive and does not require large or fixed hardware. We believe that by processing information from multiple motion sensors allows estimating organ movements and quiescent phases more accurately than is possible with the currently used methods.
4 schema:endDate 2021-12-31
5 schema:funder grid-institutes:grid.15098.35
6 schema:identifier N184032081f3c412ca6cabff8b4052ecf
7 N371d7a849d1a4bffae9bb83445b1d8a1
8 schema:inLanguage en
9 schema:keywords CT
10 CT imaging
11 CT scanner
12 MEMS
13 MEMS-based inertial measurement unit
14 PET/CT
15 PET/CT imaging
16 PET/CT scanner
17 approach
18 body
19 compensation
20 estimation approach
21 gating
22 hardware
23 imaging
24 inertial measurement unit
25 information
26 location
27 measurement unit
28 method
29 motion
30 motion compensation
31 motion estimation approach
32 motion sensors
33 motion tracking
34 movement
35 multiple locations
36 new method
37 organ movement
38 phase
39 project
40 quiescent phase
41 radiotherapy
42 scanner
43 sensors
44 tracking
45 units
46 upper body
47 schema:name MEMS-based Intrafraction Motion Tracking for PET/CT and Radiotherapy (MINMOTION)
48 schema:recipient N134f7a4438d84fea976ff6558dc5c6fa
49 sg:person.016707111625.02
50 grid-institutes:grid.1374.1
51 schema:sameAs https://app.dimensions.ai/details/grant/grant.8844214
52 schema:sdDatePublished 2022-06-01T22:37
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N5cfa23c63f7743baa83ffde9411c39e8
55 schema:startDate 2018-01-01
56 schema:url https://akareport.aka.fi/ibi_apps/WFServlet?IBIF_ex=x_HakKuvaus2&CLICKED_ON=&HAKNRO1=314483&UILANG=en&IBIAPP_app=aka_ext&TULOSTE=HTML
57 sgo:license sg:explorer/license/
58 sgo:sdDataset grants
59 rdf:type schema:MonetaryGrant
60 N134f7a4438d84fea976ff6558dc5c6fa schema:member sg:person.016707111625.02
61 schema:roleName PI
62 rdf:type schema:Role
63 N184032081f3c412ca6cabff8b4052ecf schema:name aka_id
64 schema:value 314483
65 rdf:type schema:PropertyValue
66 N371d7a849d1a4bffae9bb83445b1d8a1 schema:name dimensions_id
67 schema:value grant.8844214
68 rdf:type schema:PropertyValue
69 N41b7480e601e4237a2e3c640fc0ef2b8 schema:currency EUR
70 schema:value 499808.0
71 rdf:type schema:MonetaryAmount
72 N5cfa23c63f7743baa83ffde9411c39e8 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 rdf:type schema:DefinedTerm
76 sg:person.016707111625.02 schema:affiliation grid-institutes:None
77 schema:familyName Lehtonen
78 schema:givenName Eero
79 rdf:type schema:Person
80 grid-institutes:None schema:name University of Turku
81 rdf:type schema:Organization
82 grid-institutes:grid.1374.1 schema:Organization
83 grid-institutes:grid.15098.35 schema:Organization
 




Preview window. Press ESC to close (or click here)


...