Extending predicate-argument thesaurus with large-scale language resources for applying to natural language processing and linguistic analysis View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2014-2017

FUNDING AMOUNT

3120000 JPY

ABSTRACT

We developed and published a new framework of nominal argument structure for Japanese. The key technique of describing arguments is number-based semantic roles, which enables us to identify each argument between paraphrased sentences in nominal predicates. We constructed 5,000 example sentences of nominal predicates; those of 13000 sentences have semantic role labels and links to the corresponding examples in the predicate thesaurus. We also constructed paraphrase data between different part-of-speech words and incorporate the paraphrase data into an argument structure analyzer. Besides, we improve the performance of the argument structure analyzer by applying a statistical learning method, and published the results in IPSJ Journal and the proceedings of International Conference PACLING 2015. We also show that the argument structure analyzer with nominal predicates enables us to improve performance of Japanese textual entailment task. More... »

URL

https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26370485

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2220", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "amount": {
      "currency": "JPY", 
      "type": "MonetaryAmount", 
      "value": "3120000"
    }, 
    "description": "We developed and published a new framework of nominal argument structure for Japanese. The key technique of describing arguments is number-based semantic roles, which enables us to identify each argument between paraphrased sentences in nominal predicates. We constructed 5,000 example sentences of nominal predicates; those of 13000 sentences have semantic role labels and links to the corresponding examples in the predicate thesaurus. We also constructed paraphrase data between different part-of-speech words and incorporate the paraphrase data into an argument structure analyzer. Besides, we improve the performance of the argument structure analyzer by applying a statistical learning method, and published the results in IPSJ Journal and the proceedings of International Conference PACLING 2015. We also show that the argument structure analyzer with nominal predicates enables us to improve performance of Japanese textual entailment task.", 
    "endDate": "2017-03-31T00:00:00Z", 
    "funder": {
      "id": "https://www.grid.ac/institutes/grid.54432.34", 
      "type": "Organization"
    }, 
    "id": "sg:grant.6138803", 
    "identifier": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "6138803"
        ]
      }, 
      {
        "name": "kaken_id", 
        "type": "PropertyValue", 
        "value": [
          "26370485"
        ]
      }
    ], 
    "inLanguage": [
      "en"
    ], 
    "keywords": [
      "International Conference PACLING 2015", 
      "argument", 
      "paraphrased sentences", 
      "statistical learning methods", 
      "new framework", 
      "IPSJ Journal", 
      "predicate thesaurus", 
      "semantic roles", 
      "nominal argument structure", 
      "link", 
      "results", 
      "large-scale language resources", 
      "Japanese textual entailment task", 
      "nominal predicates", 
      "natural language processing", 
      "linguistic analysis", 
      "example sentences", 
      "number", 
      "Proceedings", 
      "speech words", 
      "different parts", 
      "paraphrase data", 
      "predicate-argument thesaurus", 
      "performance", 
      "corresponding examples", 
      "semantic role labels", 
      "key techniques", 
      "argument structure analyzer", 
      "sentences"
    ], 
    "name": "Extending predicate-argument thesaurus with large-scale language resources for applying to natural language processing and linguistic analysis", 
    "recipient": [
      {
        "id": "https://www.grid.ac/institutes/grid.261356.5", 
        "type": "Organization"
      }
    ], 
    "sameAs": [
      "https://app.dimensions.ai/details/grant/grant.6138803"
    ], 
    "sdDataset": "grants", 
    "sdDatePublished": "2019-03-07T11:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com.uberresearch.data.processor/core_data/20181219_192338/projects/base/kaken_projects_31.xml.gz", 
    "startDate": "2014-04-01T00:00:00Z", 
    "type": "MonetaryGrant", 
    "url": "https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26370485"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.6138803'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.6138803'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.6138803'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.6138803'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      19 PREDICATES      49 URIs      42 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:grant.6138803 schema:about anzsrc-for:2220
2 schema:amount N078098d6dc964f428853befb7dd56421
3 schema:description We developed and published a new framework of nominal argument structure for Japanese. The key technique of describing arguments is number-based semantic roles, which enables us to identify each argument between paraphrased sentences in nominal predicates. We constructed 5,000 example sentences of nominal predicates; those of 13000 sentences have semantic role labels and links to the corresponding examples in the predicate thesaurus. We also constructed paraphrase data between different part-of-speech words and incorporate the paraphrase data into an argument structure analyzer. Besides, we improve the performance of the argument structure analyzer by applying a statistical learning method, and published the results in IPSJ Journal and the proceedings of International Conference PACLING 2015. We also show that the argument structure analyzer with nominal predicates enables us to improve performance of Japanese textual entailment task.
4 schema:endDate 2017-03-31T00:00:00Z
5 schema:funder https://www.grid.ac/institutes/grid.54432.34
6 schema:identifier N94c40b1797874ee5b8659d4924c2033e
7 Na5d585d7fe1c4a098b15bedf6eeb2e03
8 schema:inLanguage en
9 schema:keywords IPSJ Journal
10 International Conference PACLING 2015
11 Japanese textual entailment task
12 Proceedings
13 argument
14 argument structure analyzer
15 corresponding examples
16 different parts
17 example sentences
18 key techniques
19 large-scale language resources
20 linguistic analysis
21 link
22 natural language processing
23 new framework
24 nominal argument structure
25 nominal predicates
26 number
27 paraphrase data
28 paraphrased sentences
29 performance
30 predicate thesaurus
31 predicate-argument thesaurus
32 results
33 semantic role labels
34 semantic roles
35 sentences
36 speech words
37 statistical learning methods
38 schema:name Extending predicate-argument thesaurus with large-scale language resources for applying to natural language processing and linguistic analysis
39 schema:recipient https://www.grid.ac/institutes/grid.261356.5
40 schema:sameAs https://app.dimensions.ai/details/grant/grant.6138803
41 schema:sdDatePublished 2019-03-07T11:49
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N6cfc106084ec40c2ab66debb0444ea32
44 schema:startDate 2014-04-01T00:00:00Z
45 schema:url https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26370485
46 sgo:license sg:explorer/license/
47 sgo:sdDataset grants
48 rdf:type schema:MonetaryGrant
49 N078098d6dc964f428853befb7dd56421 schema:currency JPY
50 schema:value 3120000
51 rdf:type schema:MonetaryAmount
52 N6cfc106084ec40c2ab66debb0444ea32 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N94c40b1797874ee5b8659d4924c2033e schema:name dimensions_id
55 schema:value 6138803
56 rdf:type schema:PropertyValue
57 Na5d585d7fe1c4a098b15bedf6eeb2e03 schema:name kaken_id
58 schema:value 26370485
59 rdf:type schema:PropertyValue
60 anzsrc-for:2220 schema:inDefinedTermSet anzsrc-for:
61 rdf:type schema:DefinedTerm
62 https://www.grid.ac/institutes/grid.261356.5 schema:Organization
63 https://www.grid.ac/institutes/grid.54432.34 schema:Organization
 




Preview window. Press ESC to close (or click here)


...