Crystal base, typical demonstration base and modular representation theory View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2007-2010

FUNDING AMOUNT

200000 CNY

ABSTRACT

We show that the generalised Dipper-James-Murphy conjecture is true in the case when e=0 or the multipartitions in questions are multi-cores. As a result, we obtain some non-recursive characterizations of Kleshchev multipartitions in these cases; We give a Morita equivalence theorem for the cyclotomic Hecke algebras of type G(r,p,n) and show that computing their decomposition numbers reduces to computing the p-splittable decomposition numbers and the case when the parameters are in a single (\epsilon,q)-orbit. In the case of type D_n and when the parameter q satisfies the separation condition, we get some explicit equalities which relate its decomposition numbers with certain Schur elements and the decomposition numbers of various Iwahori-Hecke algebras of type A. When char K = 0,this completely determines all of its decomposition numbers; We set up connections between two parameterizations of simple modules over the cyclotomic Hecke algebras of type G(r,p,n): the one using Kleshchev multipartitions and the one using FLOTW r-partitions, and we derive closed formulae for the number of simple modules over these Hecke algebras; Using Kashiwara-Lusztig's crystal and canonical bases theory, we prove that the space of partially harmonic tensors of type C has a Weyl filtration and is stable under base change and we obt More... »

URL

http://npd.nsfc.gov.cn/projectDetail.action?pid=10771014

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "amount": {
      "currency": "CNY", 
      "type": "MonetaryAmount", 
      "value": "200000"
    }, 
    "description": "We show that the generalised Dipper-James-Murphy conjecture is true in the case when e=0 or the multipartitions in questions are multi-cores. As a result, we obtain some non-recursive characterizations of Kleshchev multipartitions in these cases; We give a Morita equivalence theorem for the cyclotomic Hecke algebras of type G(r,p,n) and show that computing their decomposition numbers reduces to computing the p-splittable decomposition numbers and the case when the parameters are in a single (\\epsilon,q)-orbit. In the case of type D_n and when the parameter q satisfies the separation condition, we get some explicit equalities which relate its decomposition numbers with certain Schur elements and the decomposition numbers of various Iwahori-Hecke algebras of type A. When char K = 0,this completely determines all of its decomposition numbers; We set up connections between two parameterizations of simple modules over the cyclotomic Hecke algebras of type G(r,p,n): the one using Kleshchev multipartitions and the one using FLOTW r-partitions, and we derive closed formulae for the number of simple modules over these Hecke algebras; Using Kashiwara-Lusztig's crystal and canonical bases theory, we prove that the space of partially harmonic tensors of type C has a Weyl filtration and is stable under base change and we obt", 
    "endDate": "2010-12-30T00:00:00Z", 
    "funder": {
      "id": "https://www.grid.ac/institutes/grid.419696.5", 
      "type": "Organization"
    }, 
    "id": "sg:grant.4959225", 
    "identifier": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "4959225"
        ]
      }, 
      {
        "name": "nsfc_id", 
        "type": "PropertyValue", 
        "value": [
          "10771014"
        ]
      }
    ], 
    "inLanguage": [
      "zh"
    ], 
    "keywords": [
      "number", 
      "Murphy conjecture", 
      "decomposition numbers", 
      "base changes", 
      "results", 
      "modular representation theory", 
      "\\epsilon", 
      "cases", 
      "various Iwahori-Hecke algebras", 
      "cyclotomic Hecke algebras", 
      "question", 
      "harmonic tensors", 
      "Weyl filtration", 
      "closed formula", 
      "one", 
      "connection", 
      "char K =", 
      "parameter q", 
      "Kashiwara-Lusztig's crystal", 
      "type C", 
      "crystal bases", 
      "typical demonstration base", 
      "space", 
      "splittable decomposition numbers", 
      "type G(r", 
      "simple modules", 
      "Morita equivalence theorem", 
      "FLOTW r", 
      "separation conditions", 
      "non-recursive characterizations", 
      "Hecke algebra", 
      "parameters", 
      "explicit equalities", 
      "canonical bases theory", 
      "Dipper-James", 
      "certain Schur elements", 
      "partition", 
      "parameterization", 
      "type A.", 
      "type D_n", 
      "Kleshchev multipartitions", 
      "multipartition"
    ], 
    "name": "Crystal base, typical demonstration base and modular representation theory", 
    "recipient": [
      {
        "id": "https://www.grid.ac/institutes/grid.43555.32", 
        "type": "Organization"
      }, 
      {
        "affiliation": {
          "id": "https://www.grid.ac/institutes/grid.43555.32", 
          "name": "Bei Jing Institute of Technology", 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Jun", 
        "id": "sg:person.01341342225.17", 
        "type": "Person"
      }, 
      {
        "member": "sg:person.01341342225.17", 
        "roleName": "PI", 
        "type": "Role"
      }
    ], 
    "sameAs": [
      "https://app.dimensions.ai/details/grant/grant.4959225"
    ], 
    "sdDataset": "grants", 
    "sdDatePublished": "2019-03-07T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com.uberresearch.data.processor/core_data/20181219_192338/projects/base/nsfc_projects_1.xml.gz", 
    "startDate": "2007-12-31T00:00:00Z", 
    "type": "MonetaryGrant", 
    "url": "http://npd.nsfc.gov.cn/projectDetail.action?pid=10771014"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.4959225'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.4959225'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.4959225'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.4959225'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      19 PREDICATES      64 URIs      56 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:grant.4959225 schema:about anzsrc-for:2201
2 schema:amount N578ee6cb778848169c2129419bcfb12c
3 schema:description We show that the generalised Dipper-James-Murphy conjecture is true in the case when e=0 or the multipartitions in questions are multi-cores. As a result, we obtain some non-recursive characterizations of Kleshchev multipartitions in these cases; We give a Morita equivalence theorem for the cyclotomic Hecke algebras of type G(r,p,n) and show that computing their decomposition numbers reduces to computing the p-splittable decomposition numbers and the case when the parameters are in a single (\epsilon,q)-orbit. In the case of type D_n and when the parameter q satisfies the separation condition, we get some explicit equalities which relate its decomposition numbers with certain Schur elements and the decomposition numbers of various Iwahori-Hecke algebras of type A. When char K = 0,this completely determines all of its decomposition numbers; We set up connections between two parameterizations of simple modules over the cyclotomic Hecke algebras of type G(r,p,n): the one using Kleshchev multipartitions and the one using FLOTW r-partitions, and we derive closed formulae for the number of simple modules over these Hecke algebras; Using Kashiwara-Lusztig's crystal and canonical bases theory, we prove that the space of partially harmonic tensors of type C has a Weyl filtration and is stable under base change and we obt
4 schema:endDate 2010-12-30T00:00:00Z
5 schema:funder https://www.grid.ac/institutes/grid.419696.5
6 schema:identifier N6e6d572a587f4fefa142931bd73da3cb
7 Na8facbae5ec54ce7bcc46124f2d3455f
8 schema:inLanguage zh
9 schema:keywords Dipper-James
10 FLOTW r
11 Hecke algebra
12 Kashiwara-Lusztig's crystal
13 Kleshchev multipartitions
14 Morita equivalence theorem
15 Murphy conjecture
16 Weyl filtration
17 \epsilon
18 base changes
19 canonical bases theory
20 cases
21 certain Schur elements
22 char K =
23 closed formula
24 connection
25 crystal bases
26 cyclotomic Hecke algebras
27 decomposition numbers
28 explicit equalities
29 harmonic tensors
30 modular representation theory
31 multipartition
32 non-recursive characterizations
33 number
34 one
35 parameter q
36 parameterization
37 parameters
38 partition
39 question
40 results
41 separation conditions
42 simple modules
43 space
44 splittable decomposition numbers
45 type A.
46 type C
47 type D_n
48 type G(r
49 typical demonstration base
50 various Iwahori-Hecke algebras
51 schema:name Crystal base, typical demonstration base and modular representation theory
52 schema:recipient Na58226e25be14003a568646121f4f771
53 sg:person.01341342225.17
54 https://www.grid.ac/institutes/grid.43555.32
55 schema:sameAs https://app.dimensions.ai/details/grant/grant.4959225
56 schema:sdDatePublished 2019-03-07T12:40
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N57d5165237084bf18198bdff16623e50
59 schema:startDate 2007-12-31T00:00:00Z
60 schema:url http://npd.nsfc.gov.cn/projectDetail.action?pid=10771014
61 sgo:license sg:explorer/license/
62 sgo:sdDataset grants
63 rdf:type schema:MonetaryGrant
64 N578ee6cb778848169c2129419bcfb12c schema:currency CNY
65 schema:value 200000
66 rdf:type schema:MonetaryAmount
67 N57d5165237084bf18198bdff16623e50 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N6e6d572a587f4fefa142931bd73da3cb schema:name dimensions_id
70 schema:value 4959225
71 rdf:type schema:PropertyValue
72 Na58226e25be14003a568646121f4f771 schema:member sg:person.01341342225.17
73 schema:roleName PI
74 rdf:type schema:Role
75 Na8facbae5ec54ce7bcc46124f2d3455f schema:name nsfc_id
76 schema:value 10771014
77 rdf:type schema:PropertyValue
78 anzsrc-for:2201 schema:inDefinedTermSet anzsrc-for:
79 rdf:type schema:DefinedTerm
80 sg:person.01341342225.17 schema:affiliation https://www.grid.ac/institutes/grid.43555.32
81 schema:familyName Hu
82 schema:givenName Jun
83 rdf:type schema:Person
84 https://www.grid.ac/institutes/grid.419696.5 schema:Organization
85 https://www.grid.ac/institutes/grid.43555.32 schema:name Bei Jing Institute of Technology
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...