1 norm regularization and support vector machine compressing machine learning framework View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2010-2012

FUNDING AMOUNT

300000 CNY

ABSTRACT

Sparseness learning machine learning plays an important role, one can achieve feature selection and extraction, thereby reducing the sampling rate requirements, improve test speed; two to avoid overfitting and improve generalization ability of learning machine. 1 norm regularization norm for all p induces sparsity (0

URL

http://npd.nsfc.gov.cn/projectDetail.action?pid=60970067

Related SciGraph Publications

  • 2013-12. An evidential reasoning based model for diagnosis of lymph node metastasis in gastric cancer in BMC MEDICAL INFORMATICS AND DECISION MAKING
  • 2013-09. Fast Fisher Sparsity Preserving Projections in NEURAL COMPUTING AND APPLICATIONS
  • 2013-09. Classifying peer-to-peer applications using imbalanced concept-adapting very fast decision tree on IP data stream in PEER-TO-PEER NETWORKING AND APPLICATIONS
  • 2012-12. Cascaded cluster ensembles in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 2012-10. Active learning based on coupled KNN pseudo pruning in NEURAL COMPUTING AND APPLICATIONS
  • 2012-09. Parallel linear genetic programming for multi-class classification in GENETIC PROGRAMMING AND EVOLVABLE MACHINES
  • 2012. An Adaptive Non Local Spatial Fuzzy Image Segmentation Algorithm in INTELLIGENT COMPUTING TECHNOLOGY
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2208", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "amount": {
          "currency": "CNY", 
          "type": "MonetaryAmount", 
          "value": "300000"
        }, 
        "description": "Sparseness learning machine learning plays an important role, one can achieve feature selection and extraction, thereby reducing the sampling rate requirements, improve test speed; two to avoid overfitting and improve generalization ability of learning machine. 1 norm regularization norm for all p induces sparsity (0", 
        "endDate": "2012-12-31T00:00:00Z", 
        "funder": {
          "id": "https://www.grid.ac/institutes/grid.419696.5", 
          "type": "Organization"
        }, 
        "id": "sg:grant.4950191", 
        "identifier": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "4950191"
            ]
          }, 
          {
            "name": "nsfc_id", 
            "type": "PropertyValue", 
            "value": [
              "60970067"
            ]
          }
        ], 
        "inLanguage": [
          "zh"
        ], 
        "keywords": [
          "feature selection", 
          "important role", 
          "support vector machine", 
          "norm regularization norm", 
          "sparsity", 
          "machine learning", 
          "framework", 
          "extraction", 
          "norm regularization", 
          "test speed", 
          "machine", 
          "sampling rate requirement", 
          "generalization ability"
        ], 
        "name": "1 norm regularization and support vector machine compressing machine learning framework", 
        "recipient": [
          {
            "id": "https://www.grid.ac/institutes/grid.440736.2", 
            "type": "Organization"
          }, 
          {
            "affiliation": {
              "id": "https://www.grid.ac/institutes/grid.440736.2", 
              "name": "Xidian University", 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Li", 
            "id": "sg:person.0654172622.11", 
            "type": "Person"
          }, 
          {
            "member": "sg:person.0654172622.11", 
            "roleName": "PI", 
            "type": "Role"
          }
        ], 
        "sameAs": [
          "https://app.dimensions.ai/details/grant/grant.4950191"
        ], 
        "sdDataset": "grants", 
        "sdDatePublished": "2019-03-07T12:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com.uberresearch.data.processor/core_data/20181219_192338/projects/base/nsfc_projects_1.xml.gz", 
        "startDate": "2010-01-01T00:00:00Z", 
        "type": "MonetaryGrant", 
        "url": "http://npd.nsfc.gov.cn/projectDetail.action?pid=60970067"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.4950191'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.4950191'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.4950191'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.4950191'


     

    This table displays all metadata directly associated to this object as RDF triples.

    57 TRIPLES      19 PREDICATES      35 URIs      27 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:grant.4950191 schema:about anzsrc-for:2208
    2 schema:amount Ndec46d1893ac46ef9afb37add2cd757e
    3 schema:description Sparseness learning machine learning plays an important role, one can achieve feature selection and extraction, thereby reducing the sampling rate requirements, improve test speed; two to avoid overfitting and improve generalization ability of learning machine. 1 norm regularization norm for all p induces sparsity (0
    4 schema:endDate 2012-12-31T00:00:00Z
    5 schema:funder https://www.grid.ac/institutes/grid.419696.5
    6 schema:identifier N3a9d4726d5d14dfc83de60b8fb4a0118
    7 N76c3ec4a418c41b0b53cd78295d40008
    8 schema:inLanguage zh
    9 schema:keywords extraction
    10 feature selection
    11 framework
    12 generalization ability
    13 important role
    14 machine
    15 machine learning
    16 norm regularization
    17 norm regularization norm
    18 sampling rate requirement
    19 sparsity
    20 support vector machine
    21 test speed
    22 schema:name 1 norm regularization and support vector machine compressing machine learning framework
    23 schema:recipient N808449e3b0f24d12abd902fac4657d56
    24 sg:person.0654172622.11
    25 https://www.grid.ac/institutes/grid.440736.2
    26 schema:sameAs https://app.dimensions.ai/details/grant/grant.4950191
    27 schema:sdDatePublished 2019-03-07T12:40
    28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    29 schema:sdPublisher N1496b1ffeba94500801c29f746018df0
    30 schema:startDate 2010-01-01T00:00:00Z
    31 schema:url http://npd.nsfc.gov.cn/projectDetail.action?pid=60970067
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset grants
    34 rdf:type schema:MonetaryGrant
    35 N1496b1ffeba94500801c29f746018df0 schema:name Springer Nature - SN SciGraph project
    36 rdf:type schema:Organization
    37 N3a9d4726d5d14dfc83de60b8fb4a0118 schema:name nsfc_id
    38 schema:value 60970067
    39 rdf:type schema:PropertyValue
    40 N76c3ec4a418c41b0b53cd78295d40008 schema:name dimensions_id
    41 schema:value 4950191
    42 rdf:type schema:PropertyValue
    43 N808449e3b0f24d12abd902fac4657d56 schema:member sg:person.0654172622.11
    44 schema:roleName PI
    45 rdf:type schema:Role
    46 Ndec46d1893ac46ef9afb37add2cd757e schema:currency CNY
    47 schema:value 300000
    48 rdf:type schema:MonetaryAmount
    49 anzsrc-for:2208 schema:inDefinedTermSet anzsrc-for:
    50 rdf:type schema:DefinedTerm
    51 sg:person.0654172622.11 schema:affiliation https://www.grid.ac/institutes/grid.440736.2
    52 schema:familyName Zhang
    53 schema:givenName Li
    54 rdf:type schema:Person
    55 https://www.grid.ac/institutes/grid.419696.5 schema:Organization
    56 https://www.grid.ac/institutes/grid.440736.2 schema:name Xidian University
    57 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...