EUV radiation plasmon resonance study, improve produce coherent light field View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2010-2012

FUNDING AMOUNT

380000.0 CNY

ABSTRACT

The use of high-order harmonics to generate coherent extreme ultraviolet radiation has very important applications in the research of high-resolution imaging of small objects, nano-scale structure production, and extreme ultraviolet spectroscopy. The current generation of high-order harmonics must rely on femtosecond laser amplification systems. This study uses the physical phenomenon that nano-scale plasmons have a resonance enhancement effect on the laser light field, and directly uses the output of the femtosecond laser oscillator to interact with a composite target composed of nano-scale metal structure arrays and noble gas atoms. The effect produces high-order harmonics. The following researches are specifically carried out: 1) The finite-difference time-domain method (FDTD) is used to simulate and calculate the spatial distribution of the optical field intensity when the femtosecond laser is irradiated with a certain shape of nanostructures. Explore the best microstructure and laser parameters to obtain the conditions for the maximum resonance effect of plasmons. 2) Use electron beam lithography to produce metal array samples with a structure less than 100nm. 3) Establish a corresponding experimental device for high-order harmonic generation. 4) Use the experimental device and femtosecond laser oscillator to obtain high-order harmonics with a wavelength shorter than 50nm. 5) Further use the idle frequency output (2200-3000nm) of the femtosecond optical parametric oscillator to obtain coherent extreme ultraviolet radiation near 13 nm. More... »

URL

https://kd.nsfc.gov.cn/finalDetails?id=29269c4225cfce13185a5b85fd6c7e1e

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/40", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/51", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "amount": {
      "currency": "CNY", 
      "type": "MonetaryAmount", 
      "value": 380000.0
    }, 
    "description": "The use of high-order harmonics to generate coherent extreme ultraviolet radiation has very important applications in the research of high-resolution imaging of small objects, nano-scale structure production, and extreme ultraviolet spectroscopy. The current generation of high-order harmonics must rely on femtosecond laser amplification systems. This study uses the physical phenomenon that nano-scale plasmons have a resonance enhancement effect on the laser light field, and directly uses the output of the femtosecond laser oscillator to interact with a composite target composed of nano-scale metal structure arrays and noble gas atoms. The effect produces high-order harmonics. The following researches are specifically carried out: 1) The finite-difference time-domain method (FDTD) is used to simulate and calculate the spatial distribution of the optical field intensity when the femtosecond laser is irradiated with a certain shape of nanostructures. Explore the best microstructure and laser parameters to obtain the conditions for the maximum resonance effect of plasmons. 2) Use electron beam lithography to produce metal array samples with a structure less than 100nm. 3) Establish a corresponding experimental device for high-order harmonic generation. 4) Use the experimental device and femtosecond laser oscillator to obtain high-order harmonics with a wavelength shorter than 50nm. 5) Further use the idle frequency output (2200-3000nm) of the femtosecond optical parametric oscillator to obtain coherent extreme ultraviolet radiation near 13 nm.", 
    "endDate": "2012-12-31", 
    "funder": {
      "id": "http://www.grid.ac/institutes/grid.419696.5", 
      "type": "Organization"
    }, 
    "id": "sg:grant.4946537", 
    "identifier": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "grant.4946537"
        ]
      }, 
      {
        "name": "nsfc_id", 
        "type": "PropertyValue", 
        "value": [
          "60978014"
        ]
      }
    ], 
    "keywords": [
      "coherent extreme ultraviolet radiation", 
      "high-order harmonics", 
      "femtosecond laser oscillator", 
      "extreme ultraviolet radiation", 
      "finite-difference time-domain method", 
      "laser oscillator", 
      "light field", 
      "femtosecond optical parametric oscillator", 
      "high-order harmonic generation", 
      "laser light field", 
      "extreme ultraviolet spectroscopy", 
      "optical parametric oscillator", 
      "coherent light fields", 
      "optical field intensity", 
      "laser amplification system", 
      "noble gas atoms", 
      "electron beam lithography", 
      "resonance enhancement effect", 
      "high-resolution imaging", 
      "time-domain method", 
      "parametric oscillator", 
      "experimental device", 
      "harmonic generation", 
      "femtosecond laser", 
      "laser parameters", 
      "gas atoms", 
      "beam lithography", 
      "ultraviolet radiation", 
      "field intensity", 
      "resonance effect", 
      "composite target", 
      "ultraviolet spectroscopy", 
      "plasmons", 
      "array samples", 
      "corresponding experimental device", 
      "structure array", 
      "physical phenomena", 
      "oscillator", 
      "frequency output", 
      "harmonics", 
      "radiation", 
      "resonance studies", 
      "amplification system", 
      "enhancement effect", 
      "small objects", 
      "current generation", 
      "important applications", 
      "laser", 
      "wavelength", 
      "field", 
      "devices", 
      "lithography", 
      "atoms", 
      "spatial distribution", 
      "nanostructures", 
      "spectroscopy", 
      "plasmon resonance studies", 
      "certain shape", 
      "intensity", 
      "generation", 
      "array", 
      "imaging", 
      "phenomenon", 
      "structure", 
      "objects", 
      "shape", 
      "structure production", 
      "distribution", 
      "effect", 
      "parameters", 
      "microstructure", 
      "applications", 
      "output", 
      "better microstructure", 
      "target", 
      "samples", 
      "system", 
      "method", 
      "conditions", 
      "study", 
      "production", 
      "use", 
      "research"
    ], 
    "name": "EUV radiation plasmon resonance study, improve produce coherent light field", 
    "recipient": [
      {
        "id": "http://www.grid.ac/institutes/grid.440668.8", 
        "type": "Organization"
      }, 
      {
        "affiliation": {
          "id": "http://www.grid.ac/institutes/None", 
          "name": "Changchun University of Science and Technology", 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Jingquan", 
        "id": "sg:person.014441231351.87", 
        "type": "Person"
      }, 
      {
        "member": "sg:person.014441231351.87", 
        "roleName": "PI", 
        "type": "Role"
      }
    ], 
    "sameAs": [
      "https://app.dimensions.ai/details/grant/grant.4946537"
    ], 
    "sdDataset": "grants", 
    "sdDatePublished": "2022-11-24T21:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/grant/grant_75.jsonl", 
    "startDate": "2010-01-01", 
    "type": "MonetaryGrant", 
    "url": "https://kd.nsfc.gov.cn/finalDetails?id=29269c4225cfce13185a5b85fd6c7e1e"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.4946537'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.4946537'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.4946537'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.4946537'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      18 PREDICATES      105 URIs      96 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:grant.4946537 schema:about anzsrc-for:40
2 anzsrc-for:51
3 schema:amount Nf2dea2617a7e4002ae0ab0f790fd569d
4 schema:description The use of high-order harmonics to generate coherent extreme ultraviolet radiation has very important applications in the research of high-resolution imaging of small objects, nano-scale structure production, and extreme ultraviolet spectroscopy. The current generation of high-order harmonics must rely on femtosecond laser amplification systems. This study uses the physical phenomenon that nano-scale plasmons have a resonance enhancement effect on the laser light field, and directly uses the output of the femtosecond laser oscillator to interact with a composite target composed of nano-scale metal structure arrays and noble gas atoms. The effect produces high-order harmonics. The following researches are specifically carried out: 1) The finite-difference time-domain method (FDTD) is used to simulate and calculate the spatial distribution of the optical field intensity when the femtosecond laser is irradiated with a certain shape of nanostructures. Explore the best microstructure and laser parameters to obtain the conditions for the maximum resonance effect of plasmons. 2) Use electron beam lithography to produce metal array samples with a structure less than 100nm. 3) Establish a corresponding experimental device for high-order harmonic generation. 4) Use the experimental device and femtosecond laser oscillator to obtain high-order harmonics with a wavelength shorter than 50nm. 5) Further use the idle frequency output (2200-3000nm) of the femtosecond optical parametric oscillator to obtain coherent extreme ultraviolet radiation near 13 nm.
5 schema:endDate 2012-12-31
6 schema:funder grid-institutes:grid.419696.5
7 schema:identifier Nf0bc808a02984e6c8fadda1e494572bf
8 Nf2e01d4f3a3d4aa0bfc94ef79b0b88af
9 schema:keywords amplification system
10 applications
11 array
12 array samples
13 atoms
14 beam lithography
15 better microstructure
16 certain shape
17 coherent extreme ultraviolet radiation
18 coherent light fields
19 composite target
20 conditions
21 corresponding experimental device
22 current generation
23 devices
24 distribution
25 effect
26 electron beam lithography
27 enhancement effect
28 experimental device
29 extreme ultraviolet radiation
30 extreme ultraviolet spectroscopy
31 femtosecond laser
32 femtosecond laser oscillator
33 femtosecond optical parametric oscillator
34 field
35 field intensity
36 finite-difference time-domain method
37 frequency output
38 gas atoms
39 generation
40 harmonic generation
41 harmonics
42 high-order harmonic generation
43 high-order harmonics
44 high-resolution imaging
45 imaging
46 important applications
47 intensity
48 laser
49 laser amplification system
50 laser light field
51 laser oscillator
52 laser parameters
53 light field
54 lithography
55 method
56 microstructure
57 nanostructures
58 noble gas atoms
59 objects
60 optical field intensity
61 optical parametric oscillator
62 oscillator
63 output
64 parameters
65 parametric oscillator
66 phenomenon
67 physical phenomena
68 plasmon resonance studies
69 plasmons
70 production
71 radiation
72 research
73 resonance effect
74 resonance enhancement effect
75 resonance studies
76 samples
77 shape
78 small objects
79 spatial distribution
80 spectroscopy
81 structure
82 structure array
83 structure production
84 study
85 system
86 target
87 time-domain method
88 ultraviolet radiation
89 ultraviolet spectroscopy
90 use
91 wavelength
92 schema:name EUV radiation plasmon resonance study, improve produce coherent light field
93 schema:recipient N5ca555410d3a4adbbad9dcfa2abf1501
94 sg:person.014441231351.87
95 grid-institutes:grid.440668.8
96 schema:sameAs https://app.dimensions.ai/details/grant/grant.4946537
97 schema:sdDatePublished 2022-11-24T21:22
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher N165240841c2240468651ef9ee04be53d
100 schema:startDate 2010-01-01
101 schema:url https://kd.nsfc.gov.cn/finalDetails?id=29269c4225cfce13185a5b85fd6c7e1e
102 sgo:license sg:explorer/license/
103 sgo:sdDataset grants
104 rdf:type schema:MonetaryGrant
105 N165240841c2240468651ef9ee04be53d schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N5ca555410d3a4adbbad9dcfa2abf1501 schema:member sg:person.014441231351.87
108 schema:roleName PI
109 rdf:type schema:Role
110 Nf0bc808a02984e6c8fadda1e494572bf schema:name nsfc_id
111 schema:value 60978014
112 rdf:type schema:PropertyValue
113 Nf2dea2617a7e4002ae0ab0f790fd569d schema:currency CNY
114 schema:value 380000.0
115 rdf:type schema:MonetaryAmount
116 Nf2e01d4f3a3d4aa0bfc94ef79b0b88af schema:name dimensions_id
117 schema:value grant.4946537
118 rdf:type schema:PropertyValue
119 anzsrc-for:40 schema:inDefinedTermSet anzsrc-for:
120 rdf:type schema:DefinedTerm
121 anzsrc-for:51 schema:inDefinedTermSet anzsrc-for:
122 rdf:type schema:DefinedTerm
123 sg:person.014441231351.87 schema:affiliation grid-institutes:None
124 schema:familyName Lin
125 schema:givenName Jingquan
126 rdf:type schema:Person
127 grid-institutes:None schema:name Changchun University of Science and Technology
128 rdf:type schema:Organization
129 grid-institutes:grid.419696.5 schema:Organization
130 grid-institutes:grid.440668.8 schema:Organization
 




Preview window. Press ESC to close (or click here)


...