EUV radiation plasmon resonance study, improve produce coherent light field View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2010-2012

FUNDING AMOUNT

380000.0 CNY

ABSTRACT

The use of high-order harmonics to generate coherent extreme ultraviolet radiation has very important applications in the research of high-resolution imaging of small objects, nano-scale structure production, and extreme ultraviolet spectroscopy. The current generation of high-order harmonics must rely on femtosecond laser amplification systems. This study uses the physical phenomenon that nano-scale plasmons have a resonance enhancement effect on the laser light field, and directly uses the output of the femtosecond laser oscillator to interact with a composite target composed of nano-scale metal structure arrays and noble gas atoms. The effect produces high-order harmonics. The following researches are specifically carried out: 1) The finite-difference time-domain method (FDTD) is used to simulate and calculate the spatial distribution of the optical field intensity when the femtosecond laser is irradiated with a certain shape of nanostructures. Explore the best microstructure and laser parameters to obtain the conditions for the maximum resonance effect of plasmons. 2) Use electron beam lithography to produce metal array samples with a structure less than 100nm. 3) Establish a corresponding experimental device for high-order harmonic generation. 4) Use the experimental device and femtosecond laser oscillator to obtain high-order harmonics with a wavelength shorter than 50nm. 5) Further use the idle frequency output (2200-3000nm) of the femtosecond optical parametric oscillator to obtain coherent extreme ultraviolet radiation near 13 nm. More... »

URL

http://output.nsfc.gov.cn/conclusionProject/29269c4225cfce13185a5b85fd6c7e1e

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "amount": {
      "currency": "CNY", 
      "type": "MonetaryAmount", 
      "value": 380000.0
    }, 
    "description": "The use of high-order harmonics to generate coherent extreme ultraviolet radiation has very important applications in the research of high-resolution imaging of small objects, nano-scale structure production, and extreme ultraviolet spectroscopy. The current generation of high-order harmonics must rely on femtosecond laser amplification systems. This study uses the physical phenomenon that nano-scale plasmons have a resonance enhancement effect on the laser light field, and directly uses the output of the femtosecond laser oscillator to interact with a composite target composed of nano-scale metal structure arrays and noble gas atoms. The effect produces high-order harmonics. The following researches are specifically carried out: 1) The finite-difference time-domain method (FDTD) is used to simulate and calculate the spatial distribution of the optical field intensity when the femtosecond laser is irradiated with a certain shape of nanostructures. Explore the best microstructure and laser parameters to obtain the conditions for the maximum resonance effect of plasmons. 2) Use electron beam lithography to produce metal array samples with a structure less than 100nm. 3) Establish a corresponding experimental device for high-order harmonic generation. 4) Use the experimental device and femtosecond laser oscillator to obtain high-order harmonics with a wavelength shorter than 50nm. 5) Further use the idle frequency output (2200-3000nm) of the femtosecond optical parametric oscillator to obtain coherent extreme ultraviolet radiation near 13 nm.", 
    "endDate": "2012-12-31", 
    "funder": {
      "id": "http://www.grid.ac/institutes/grid.419696.5", 
      "type": "Organization"
    }, 
    "id": "sg:grant.4946537", 
    "identifier": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "grant.4946537"
        ]
      }, 
      {
        "name": "nsfc_id", 
        "type": "PropertyValue", 
        "value": [
          "60978014"
        ]
      }
    ], 
    "keywords": [
      "coherent extreme ultraviolet radiation", 
      "high-order harmonics", 
      "femtosecond laser oscillator", 
      "extreme ultraviolet radiation", 
      "finite-difference time-domain method", 
      "laser oscillator", 
      "light field", 
      "femtosecond optical parametric oscillator", 
      "high-order harmonic generation", 
      "laser light field", 
      "extreme ultraviolet spectroscopy", 
      "optical parametric oscillator", 
      "coherent light fields", 
      "optical field intensity", 
      "laser amplification system", 
      "noble gas atoms", 
      "electron beam lithography", 
      "resonance enhancement effect", 
      "high-resolution imaging", 
      "time-domain method", 
      "parametric oscillator", 
      "experimental device", 
      "harmonic generation", 
      "femtosecond laser", 
      "laser parameters", 
      "gas atoms", 
      "beam lithography", 
      "ultraviolet radiation", 
      "field intensity", 
      "resonance effect", 
      "composite target", 
      "ultraviolet spectroscopy", 
      "plasmons", 
      "array samples", 
      "corresponding experimental device", 
      "structure array", 
      "physical phenomena", 
      "oscillator", 
      "frequency output", 
      "harmonics", 
      "radiation", 
      "resonance studies", 
      "amplification system", 
      "enhancement effect", 
      "small objects", 
      "current generation", 
      "important applications", 
      "laser", 
      "wavelength", 
      "field", 
      "devices", 
      "lithography", 
      "atoms", 
      "spatial distribution", 
      "nanostructures", 
      "spectroscopy", 
      "plasmon resonance studies", 
      "certain shape", 
      "intensity", 
      "generation", 
      "array", 
      "imaging", 
      "phenomenon", 
      "structure", 
      "objects", 
      "shape", 
      "structure production", 
      "distribution", 
      "effect", 
      "parameters", 
      "microstructure", 
      "applications", 
      "output", 
      "better microstructure", 
      "target", 
      "samples", 
      "system", 
      "method", 
      "conditions", 
      "study", 
      "production", 
      "use", 
      "research"
    ], 
    "name": "EUV radiation plasmon resonance study, improve produce coherent light field", 
    "recipient": [
      {
        "id": "http://www.grid.ac/institutes/grid.440668.8", 
        "type": "Organization"
      }, 
      {
        "affiliation": {
          "id": "http://www.grid.ac/institutes/None", 
          "name": "Changchun University of Science and Technology", 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Jingquan", 
        "id": "sg:person.014441231351.87", 
        "type": "Person"
      }, 
      {
        "member": "sg:person.014441231351.87", 
        "roleName": "PI", 
        "type": "Role"
      }
    ], 
    "sameAs": [
      "https://app.dimensions.ai/details/grant/grant.4946537"
    ], 
    "sdDataset": "grants", 
    "sdDatePublished": "2022-09-02T16:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/grant/grant_70.jsonl", 
    "startDate": "2010-01-01", 
    "type": "MonetaryGrant", 
    "url": "http://output.nsfc.gov.cn/conclusionProject/29269c4225cfce13185a5b85fd6c7e1e"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.4946537'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.4946537'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.4946537'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.4946537'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      18 PREDICATES      104 URIs      96 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:grant.4946537 schema:about anzsrc-for:02
2 schema:amount N73f1adc128fc4293b79f66b20c3c7233
3 schema:description The use of high-order harmonics to generate coherent extreme ultraviolet radiation has very important applications in the research of high-resolution imaging of small objects, nano-scale structure production, and extreme ultraviolet spectroscopy. The current generation of high-order harmonics must rely on femtosecond laser amplification systems. This study uses the physical phenomenon that nano-scale plasmons have a resonance enhancement effect on the laser light field, and directly uses the output of the femtosecond laser oscillator to interact with a composite target composed of nano-scale metal structure arrays and noble gas atoms. The effect produces high-order harmonics. The following researches are specifically carried out: 1) The finite-difference time-domain method (FDTD) is used to simulate and calculate the spatial distribution of the optical field intensity when the femtosecond laser is irradiated with a certain shape of nanostructures. Explore the best microstructure and laser parameters to obtain the conditions for the maximum resonance effect of plasmons. 2) Use electron beam lithography to produce metal array samples with a structure less than 100nm. 3) Establish a corresponding experimental device for high-order harmonic generation. 4) Use the experimental device and femtosecond laser oscillator to obtain high-order harmonics with a wavelength shorter than 50nm. 5) Further use the idle frequency output (2200-3000nm) of the femtosecond optical parametric oscillator to obtain coherent extreme ultraviolet radiation near 13 nm.
4 schema:endDate 2012-12-31
5 schema:funder grid-institutes:grid.419696.5
6 schema:identifier N2c7e7ebad4cc4f529f8e23312b26f90e
7 N3bf07459c7ff4607be527441293314e7
8 schema:keywords amplification system
9 applications
10 array
11 array samples
12 atoms
13 beam lithography
14 better microstructure
15 certain shape
16 coherent extreme ultraviolet radiation
17 coherent light fields
18 composite target
19 conditions
20 corresponding experimental device
21 current generation
22 devices
23 distribution
24 effect
25 electron beam lithography
26 enhancement effect
27 experimental device
28 extreme ultraviolet radiation
29 extreme ultraviolet spectroscopy
30 femtosecond laser
31 femtosecond laser oscillator
32 femtosecond optical parametric oscillator
33 field
34 field intensity
35 finite-difference time-domain method
36 frequency output
37 gas atoms
38 generation
39 harmonic generation
40 harmonics
41 high-order harmonic generation
42 high-order harmonics
43 high-resolution imaging
44 imaging
45 important applications
46 intensity
47 laser
48 laser amplification system
49 laser light field
50 laser oscillator
51 laser parameters
52 light field
53 lithography
54 method
55 microstructure
56 nanostructures
57 noble gas atoms
58 objects
59 optical field intensity
60 optical parametric oscillator
61 oscillator
62 output
63 parameters
64 parametric oscillator
65 phenomenon
66 physical phenomena
67 plasmon resonance studies
68 plasmons
69 production
70 radiation
71 research
72 resonance effect
73 resonance enhancement effect
74 resonance studies
75 samples
76 shape
77 small objects
78 spatial distribution
79 spectroscopy
80 structure
81 structure array
82 structure production
83 study
84 system
85 target
86 time-domain method
87 ultraviolet radiation
88 ultraviolet spectroscopy
89 use
90 wavelength
91 schema:name EUV radiation plasmon resonance study, improve produce coherent light field
92 schema:recipient Na05f07bc4acd47a7afee716933deb841
93 sg:person.014441231351.87
94 grid-institutes:grid.440668.8
95 schema:sameAs https://app.dimensions.ai/details/grant/grant.4946537
96 schema:sdDatePublished 2022-09-02T16:20
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Ncbeb9e4b6e374b0c96a8dc5a82c088c0
99 schema:startDate 2010-01-01
100 schema:url http://output.nsfc.gov.cn/conclusionProject/29269c4225cfce13185a5b85fd6c7e1e
101 sgo:license sg:explorer/license/
102 sgo:sdDataset grants
103 rdf:type schema:MonetaryGrant
104 N2c7e7ebad4cc4f529f8e23312b26f90e schema:name dimensions_id
105 schema:value grant.4946537
106 rdf:type schema:PropertyValue
107 N3bf07459c7ff4607be527441293314e7 schema:name nsfc_id
108 schema:value 60978014
109 rdf:type schema:PropertyValue
110 N73f1adc128fc4293b79f66b20c3c7233 schema:currency CNY
111 schema:value 380000.0
112 rdf:type schema:MonetaryAmount
113 Na05f07bc4acd47a7afee716933deb841 schema:member sg:person.014441231351.87
114 schema:roleName PI
115 rdf:type schema:Role
116 Ncbeb9e4b6e374b0c96a8dc5a82c088c0 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
119 rdf:type schema:DefinedTerm
120 sg:person.014441231351.87 schema:affiliation grid-institutes:None
121 schema:familyName Lin
122 schema:givenName Jingquan
123 rdf:type schema:Person
124 grid-institutes:None schema:name Changchun University of Science and Technology
125 rdf:type schema:Organization
126 grid-institutes:grid.419696.5 schema:Organization
127 grid-institutes:grid.440668.8 schema:Organization
 




Preview window. Press ESC to close (or click here)


...