Geometry of subRiemannian groups: regularity of finite-perimeter sets, geodesics, spheres, and isometries with applications and generalizations to biLipschitz homogeneous spaces. View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2015-2020

FUNDING AMOUNT

434485 EUR

ABSTRACT

We study the geometry of subRiemannian groups: regularity of finite-perimeter sets, geodesics, spheres, and isometries with applications and generalizations to biLipschitz homogeneous spaces

URL

http://webfocus.aka.fi/ibi_apps/WFServlet?IBIF_ex=x_HakKuvaus2&CLICKED_ON=&HAKNRO1=288501&UILANG=en&IBIAPP_app=aka_ext&TULOSTE=HTML

Related SciGraph Publications

  • 2019-03-21. Extending an Example by Colding and Minicozzi in THE JOURNAL OF GEOMETRIC ANALYSIS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "amount": {
          "currency": "EUR", 
          "type": "MonetaryAmount", 
          "value": "434485"
        }, 
        "description": "We study the geometry of subRiemannian groups: regularity of finite-perimeter sets, geodesics, spheres, and isometries with \napplications and generalizations to biLipschitz homogeneous spaces", 
        "endDate": "2020-08-31T00:00:00Z", 
        "funder": {
          "id": "https://www.grid.ac/institutes/grid.15098.35", 
          "type": "Organization"
        }, 
        "id": "sg:grant.4248544", 
        "identifier": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "4248544"
            ]
          }, 
          {
            "name": "aka_id", 
            "type": "PropertyValue", 
            "value": [
              "288501"
            ]
          }
        ], 
        "inLanguage": [
          "en"
        ], 
        "keywords": [
          "homogeneous spaces", 
          "finite-perimeter sets", 
          "sphere", 
          "geodesics", 
          "generalization", 
          "subRiemannian groups", 
          "application", 
          "isometries", 
          "geometry", 
          "regularity"
        ], 
        "name": "Geometry of subRiemannian groups: regularity of finite-perimeter sets, geodesics, spheres, and isometries with applications and generalizations to biLipschitz homogeneous spaces.", 
        "recipient": [
          {
            "id": "https://www.grid.ac/institutes/grid.9681.6", 
            "type": "Organization"
          }, 
          {
            "affiliation": {
              "id": "https://www.grid.ac/institutes/grid.9681.6", 
              "name": "University of Jyv\u00e4skyl\u00e4", 
              "type": "Organization"
            }, 
            "familyName": "Le Donne", 
            "givenName": "Enrico", 
            "id": "sg:person.01330732167.20", 
            "type": "Person"
          }, 
          {
            "member": "sg:person.01330732167.20", 
            "roleName": "PI", 
            "type": "Role"
          }
        ], 
        "sameAs": [
          "https://app.dimensions.ai/details/grant/grant.4248544"
        ], 
        "sdDataset": "grants", 
        "sdDatePublished": "2021-01-20T01:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com.uberresearch.data.processor/core_data/20181219_192338/projects/base/aka_projects.xml.gz", 
        "startDate": "2015-01-09T00:00:00Z", 
        "type": "MonetaryGrant", 
        "url": "http://webfocus.aka.fi/ibi_apps/WFServlet?IBIF_ex=x_HakKuvaus2&CLICKED_ON=&HAKNRO1=288501&UILANG=en&IBIAPP_app=aka_ext&TULOSTE=HTML"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.4248544'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.4248544'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.4248544'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.4248544'


     

    This table displays all metadata directly associated to this object as RDF triples.

    54 TRIPLES      19 PREDICATES      32 URIs      24 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:grant.4248544 schema:about anzsrc-for:2201
    2 schema:amount N30f5d70bb1ea4645be88ba17ad2965e3
    3 schema:description We study the geometry of subRiemannian groups: regularity of finite-perimeter sets, geodesics, spheres, and isometries with applications and generalizations to biLipschitz homogeneous spaces
    4 schema:endDate 2020-08-31T00:00:00Z
    5 schema:funder https://www.grid.ac/institutes/grid.15098.35
    6 schema:identifier N26062fdc6707412680e3767425184d23
    7 Nec8f3865d57c4eb7b48b5b61173bb36f
    8 schema:inLanguage en
    9 schema:keywords application
    10 finite-perimeter sets
    11 generalization
    12 geodesics
    13 geometry
    14 homogeneous spaces
    15 isometries
    16 regularity
    17 sphere
    18 subRiemannian groups
    19 schema:name Geometry of subRiemannian groups: regularity of finite-perimeter sets, geodesics, spheres, and isometries with applications and generalizations to biLipschitz homogeneous spaces.
    20 schema:recipient N99a39a3901d24fc69e335f333e90f5d1
    21 sg:person.01330732167.20
    22 https://www.grid.ac/institutes/grid.9681.6
    23 schema:sameAs https://app.dimensions.ai/details/grant/grant.4248544
    24 schema:sdDatePublished 2021-01-20T01:44
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N46b6ce09a0f6432eb10d80c782685d46
    27 schema:startDate 2015-01-09T00:00:00Z
    28 schema:url http://webfocus.aka.fi/ibi_apps/WFServlet?IBIF_ex=x_HakKuvaus2&CLICKED_ON=&HAKNRO1=288501&UILANG=en&IBIAPP_app=aka_ext&TULOSTE=HTML
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset grants
    31 rdf:type schema:MonetaryGrant
    32 N26062fdc6707412680e3767425184d23 schema:name aka_id
    33 schema:value 288501
    34 rdf:type schema:PropertyValue
    35 N30f5d70bb1ea4645be88ba17ad2965e3 schema:currency EUR
    36 schema:value 434485
    37 rdf:type schema:MonetaryAmount
    38 N46b6ce09a0f6432eb10d80c782685d46 schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N99a39a3901d24fc69e335f333e90f5d1 schema:member sg:person.01330732167.20
    41 schema:roleName PI
    42 rdf:type schema:Role
    43 Nec8f3865d57c4eb7b48b5b61173bb36f schema:name dimensions_id
    44 schema:value 4248544
    45 rdf:type schema:PropertyValue
    46 anzsrc-for:2201 schema:inDefinedTermSet anzsrc-for:
    47 rdf:type schema:DefinedTerm
    48 sg:person.01330732167.20 schema:affiliation https://www.grid.ac/institutes/grid.9681.6
    49 schema:familyName Le Donne
    50 schema:givenName Enrico
    51 rdf:type schema:Person
    52 https://www.grid.ac/institutes/grid.15098.35 schema:Organization
    53 https://www.grid.ac/institutes/grid.9681.6 schema:name University of Jyväskylä
    54 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...