Hardware-based accelerators for real-time machine learning View Homepage


Ontology type: schema:MonetaryGrant     


Grant Info

YEARS

2013-2016

FUNDING AMOUNT

200000 AUD

ABSTRACT

This project will tackle the challenge of applying real-time machine learning to massive high-frequency data. This project will leverage advancements in machine learning and hardware synthesis to implement computationally complex machine-learning algorithms on hardware-accelerated platforms, avoiding overhead delays incurred by software running on a processor.

URL

http://purl.org/au-research/grants/arc/LP130101034

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2208", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2208", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "amount": {
      "currency": "AUD", 
      "type": "MonetaryAmount", 
      "value": "200000"
    }, 
    "description": "This project will tackle the challenge of applying real-time machine learning to massive high-frequency data. This project will leverage advancements in machine learning and hardware synthesis to implement computationally complex machine-learning algorithms on hardware-accelerated platforms, avoiding overhead delays incurred by software running on a processor.", 
    "endDate": "2016-12-31T00:00:00Z", 
    "funder": {
      "id": "https://www.grid.ac/institutes/grid.413452.5", 
      "type": "Organization"
    }, 
    "id": "sg:grant.3930617", 
    "identifier": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "3930617"
        ]
      }, 
      {
        "name": "arc_id", 
        "type": "PropertyValue", 
        "value": [
          "LP130101034"
        ]
      }
    ], 
    "inLanguage": [
      "en"
    ], 
    "keywords": [
      "overhead delays", 
      "advancement", 
      "project", 
      "algorithms", 
      "real-time machine learning", 
      "accelerator", 
      "challenges", 
      "hardware", 
      "complex machines", 
      "software", 
      "real-time machine", 
      "machine learning", 
      "hardware synthesis", 
      "massive high-frequency data", 
      "processors", 
      "platform"
    ], 
    "name": "Hardware-based accelerators for real-time machine learning", 
    "recipient": [
      {
        "id": "https://www.grid.ac/institutes/grid.1013.3", 
        "type": "Organization"
      }
    ], 
    "sameAs": [
      "https://app.dimensions.ai/details/grant/grant.3930617"
    ], 
    "sdDataset": "grants", 
    "sdDatePublished": "2019-03-07T11:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com.uberresearch.data.processor/core_data/20181219_192338/projects/base/arc_projects.xml.gz", 
    "startDate": "2013-01-01T00:00:00Z", 
    "type": "MonetaryGrant", 
    "url": "http://purl.org/au-research/grants/arc/LP130101034"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/grant.3930617'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/grant.3930617'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/grant.3930617'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/grant.3930617'


 

This table displays all metadata directly associated to this object as RDF triples.

50 TRIPLES      19 PREDICATES      36 URIs      29 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:grant.3930617 schema:about anzsrc-for:2208
2 schema:amount N0e30fa5f38e646c2a9a492f3e332cfd3
3 schema:description This project will tackle the challenge of applying real-time machine learning to massive high-frequency data. This project will leverage advancements in machine learning and hardware synthesis to implement computationally complex machine-learning algorithms on hardware-accelerated platforms, avoiding overhead delays incurred by software running on a processor.
4 schema:endDate 2016-12-31T00:00:00Z
5 schema:funder https://www.grid.ac/institutes/grid.413452.5
6 schema:identifier N94386f9b1fba43dcb2f51b17ed058988
7 Ne7ea7a3337e249f1904579bc2ee72667
8 schema:inLanguage en
9 schema:keywords accelerator
10 advancement
11 algorithms
12 challenges
13 complex machines
14 hardware
15 hardware synthesis
16 machine learning
17 massive high-frequency data
18 overhead delays
19 platform
20 processors
21 project
22 real-time machine
23 real-time machine learning
24 software
25 schema:name Hardware-based accelerators for real-time machine learning
26 schema:recipient https://www.grid.ac/institutes/grid.1013.3
27 schema:sameAs https://app.dimensions.ai/details/grant/grant.3930617
28 schema:sdDatePublished 2019-03-07T11:16
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N881bd951fb5945e39ae1b0bae9eebfaf
31 schema:startDate 2013-01-01T00:00:00Z
32 schema:url http://purl.org/au-research/grants/arc/LP130101034
33 sgo:license sg:explorer/license/
34 sgo:sdDataset grants
35 rdf:type schema:MonetaryGrant
36 N0e30fa5f38e646c2a9a492f3e332cfd3 schema:currency AUD
37 schema:value 200000
38 rdf:type schema:MonetaryAmount
39 N881bd951fb5945e39ae1b0bae9eebfaf schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N94386f9b1fba43dcb2f51b17ed058988 schema:name dimensions_id
42 schema:value 3930617
43 rdf:type schema:PropertyValue
44 Ne7ea7a3337e249f1904579bc2ee72667 schema:name arc_id
45 schema:value LP130101034
46 rdf:type schema:PropertyValue
47 anzsrc-for:2208 schema:inDefinedTermSet anzsrc-for:
48 rdf:type schema:DefinedTerm
49 https://www.grid.ac/institutes/grid.1013.3 schema:Organization
50 https://www.grid.ac/institutes/grid.413452.5 schema:Organization
 




Preview window. Press ESC to close (or click here)


...