Machine leArning Based CT angiograpHy derIved FFR a Multi-ceNtEr, Registry View Homepage


Ontology type: schema:MedicalStudy     


Clinical Trial Info

YEARS

2016-2017

ABSTRACT

Demonstrate in a large multicenter population the diagnostic performance of a pre-commercial on-site, local, CT angiography derived FFR algorithm in comparison to invasive FFR. Detailed Description To retrospectively evaluate the diagnostic accuracy of FFRCT, in patients with known or suspected CAD. the investigators propose to do technical assessment of the software and evaluate how different parameters effect the outcome. Validate the FFTCT outcome by comparing the FFRCT values with invasive FFR values from retrospective patient data. To analyze the potential of FFRCT on decision making and prognosis. More... »

URL

https://clinicaltrials.gov/show/NCT02805621

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2790", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "description": "Demonstrate in a large multicenter population the diagnostic performance of a pre-commercial on-site, local, CT angiography derived FFR algorithm in comparison to invasive FFR.\n\nDetailed Description\nTo retrospectively evaluate the diagnostic accuracy of FFRCT, in patients with known or suspected CAD. the investigators propose to do technical assessment of the software and evaluate how different parameters effect the outcome. Validate the FFTCT outcome by comparing the FFRCT values with invasive FFR values from retrospective patient data. To analyze the potential of FFRCT on decision making and prognosis.", 
    "endDate": "2017-01-01T00:00:00Z", 
    "id": "sg:clinicaltrial.NCT02805621", 
    "keywords": [
      "machine", 
      "CT", 
      "multi-center", 
      "registry", 
      "Demonstrate", 
      "multicenter", 
      "diagnostic performance", 
      "CT angiography", 
      "comparison", 
      "diagnostic accuracy", 
      "patient", 
      "CAD", 
      "assessment", 
      "software", 
      "different parameter", 
      "Validate", 
      "patient data", 
      "prognosis"
    ], 
    "name": "Machine leArning Based CT angiograpHy derIved FFR a Multi-ceNtEr, Registry", 
    "sameAs": [
      "https://app.dimensions.ai/details/clinical_trial/NCT02805621"
    ], 
    "sdDataset": "clinical_trials", 
    "sdDatePublished": "2019-03-07T15:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "file:///pack/app/us_ct_data_00021.json", 
    "sponsor": [
      {
        "id": "https://www.grid.ac/institutes/grid.5645.2", 
        "type": "Organization"
      }, 
      {
        "id": "https://www.grid.ac/institutes/grid.418887.a", 
        "type": "Organization"
      }, 
      {
        "id": "https://www.grid.ac/institutes/grid.413967.e", 
        "type": "Organization"
      }, 
      {
        "id": "https://www.grid.ac/institutes/grid.415886.6", 
        "type": "Organization"
      }, 
      {
        "id": "https://www.grid.ac/institutes/grid.259828.c", 
        "type": "Organization"
      }
    ], 
    "startDate": "2016-04-01T00:00:00Z", 
    "subjectOf": [
      {
        "id": "sg:pub.10.1007/s00330-014-3482-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548836", 
          "https://doi.org/10.1007/s00330-014-3482-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcmg.2015.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002998816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185115622075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010514460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ehjci/jew094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059501746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14140992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078989089"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "type": "MedicalStudy", 
    "url": "https://clinicaltrials.gov/show/NCT02805621"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/clinicaltrial.NCT02805621'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/clinicaltrial.NCT02805621'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/clinicaltrial.NCT02805621'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/clinicaltrial.NCT02805621'


 

This table displays all metadata directly associated to this object as RDF triples.

61 TRIPLES      16 PREDICATES      42 URIs      27 LITERALS      1 BLANK NODES

Subject Predicate Object
1 sg:clinicaltrial.NCT02805621 schema:about anzsrc-for:2790
2 schema:description Demonstrate in a large multicenter population the diagnostic performance of a pre-commercial on-site, local, CT angiography derived FFR algorithm in comparison to invasive FFR. Detailed Description To retrospectively evaluate the diagnostic accuracy of FFRCT, in patients with known or suspected CAD. the investigators propose to do technical assessment of the software and evaluate how different parameters effect the outcome. Validate the FFTCT outcome by comparing the FFRCT values with invasive FFR values from retrospective patient data. To analyze the potential of FFRCT on decision making and prognosis.
3 schema:endDate 2017-01-01T00:00:00Z
4 schema:keywords CAD
5 CT
6 CT angiography
7 Demonstrate
8 Validate
9 assessment
10 comparison
11 diagnostic accuracy
12 diagnostic performance
13 different parameter
14 machine
15 multi-center
16 multicenter
17 patient
18 patient data
19 prognosis
20 registry
21 software
22 schema:name Machine leArning Based CT angiograpHy derIved FFR a Multi-ceNtEr, Registry
23 schema:sameAs https://app.dimensions.ai/details/clinical_trial/NCT02805621
24 schema:sdDatePublished 2019-03-07T15:26
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N9217657bffa84a448fcc1822b375d9e7
27 schema:sponsor https://www.grid.ac/institutes/grid.259828.c
28 https://www.grid.ac/institutes/grid.413967.e
29 https://www.grid.ac/institutes/grid.415886.6
30 https://www.grid.ac/institutes/grid.418887.a
31 https://www.grid.ac/institutes/grid.5645.2
32 schema:startDate 2016-04-01T00:00:00Z
33 schema:subjectOf sg:pub.10.1007/s00330-014-3482-5
34 https://doi.org/10.1016/j.jcmg.2015.09.019
35 https://doi.org/10.1093/ehjci/jew094
36 https://doi.org/10.1148/radiol.14140992
37 https://doi.org/10.1177/0284185115622075
38 schema:url https://clinicaltrials.gov/show/NCT02805621
39 sgo:license sg:explorer/license/
40 sgo:sdDataset clinical_trials
41 rdf:type schema:MedicalStudy
42 N9217657bffa84a448fcc1822b375d9e7 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 anzsrc-for:2790 schema:inDefinedTermSet anzsrc-for:
45 rdf:type schema:DefinedTerm
46 sg:pub.10.1007/s00330-014-3482-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548836
47 https://doi.org/10.1007/s00330-014-3482-5
48 rdf:type schema:CreativeWork
49 https://doi.org/10.1016/j.jcmg.2015.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002998816
50 rdf:type schema:CreativeWork
51 https://doi.org/10.1093/ehjci/jew094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059501746
52 rdf:type schema:CreativeWork
53 https://doi.org/10.1148/radiol.14140992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078989089
54 rdf:type schema:CreativeWork
55 https://doi.org/10.1177/0284185115622075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010514460
56 rdf:type schema:CreativeWork
57 https://www.grid.ac/institutes/grid.259828.c schema:Organization
58 https://www.grid.ac/institutes/grid.413967.e schema:Organization
59 https://www.grid.ac/institutes/grid.415886.6 schema:Organization
60 https://www.grid.ac/institutes/grid.418887.a schema:Organization
61 https://www.grid.ac/institutes/grid.5645.2 schema:Organization
 




Preview window. Press ESC to close (or click here)


...