Enhancing Utilization of Non-Invasive Positive Pressure Ventilation in Critical Care View Homepage


Ontology type: schema:MedicalStudy     


Clinical Trial Info

YEARS

2003-2019

ABSTRACT

Non-invasive positive pressure ventilation (NIV) refers to the provision of mechanical ventilation without an artificial airway (for example, an endotracheal tube). Over the past decade, evidence from randomized control trials has accumulated to demonstrate effectiveness of the technique in avoiding intubation, reducing complications associated with intubation, shortening ICU and hospital lengths of stay, and reducing mortality rates in selected patients with acute respiratory failure. However, NIV is still underutilized at many medical centers. The purposes of this project will be to acquire information related to NIV use, to identify reasons for underutilization, to implement interventions that encourage more appropriate use of NIV, and to evaluate the effectiveness of the interventions. Reliable information on NIV use as well as analysis of reasons for underutilization will provide insight into ways of enhancing NIV use. We will determine utilization rate, technology used, patient diagnoses, duration of ventilator use and hospital stay, and success rates as recorded on case report forms (CRFs). After completing the survey, we will provide an educational program to randomly selected institutions (one-half of the total) aimed at increasing the knowledge and skill of physicians, nurses, and therapists regarding use and implementation of NIV. Data will be gathered for a second round with the same data-gathering instruments used during Detailed Description Project Focus The focus of this project is to improve the ventilatory management of patients with acute respiratory failure in the critical care setting by enhancing the use of non-invasive ventilation, a goal that should lead to improved outcomes and efficiency of care. Within the framework of the funding agency, the Chest Foundation, this proposal aims to promote the use of alternative therapies in treating patients with critical illness, educate practitioners, and disseminate new knowledge regarding the therapy. Background Non-invasive positive pressure ventilation (NPPV) provides mechanical ventilation without the need for airway invasion through the use of either nasal or oronasal masks (covering both the nose and mouth) attached to positive pressure ventilators. Published evidence from randomized control trials has demonstrated the effectiveness of the technique in avoiding intubation, reducing complications associated with intubation, shortening ICU and hospital lengths of stay, and reducing mortality rates in selected patients with acute respiratory failure. Randomized trials have demonstrated effectiveness in patients with acute exacerbations of COPD (1-3), cardiogenic pulmonary edema (4), immunocompromised patients with hypoxemic respiratory failure (5,6), facilitating the weaning process in patients ventilated invasively (7), and in patients who develop respiratory insufficiency after lung resection (8). In addition, evidence that is not quite as strong supports the use of NPPV in patients with acute asthma (9), cystic fibrosis (10), community-acquired pneumonia if there is underlying COPD (11), and patients with a do-not-intubate status (12). Based on this evidence, consensus groups have recommended the use of NPPV in treating patients with COPD exacerbations and for selected patients with other diagnoses (13). However, NPPV is still underutilized at many medical centers throughout the world (14) and it is fair to presume that many patients are being deprived of NPPV's advantages and that ICU resources are being wasted. Similar surveys have not been performed in the US, and my firm impression from polling audiences when I speak on this subject is that a similar proportion of US centers are not using NPPV. The purposes of this project are to acquire this information in a US setting, to identify reasons for underutilization, to implement interventions that encourage more appropriate use of NPPV, and then to evaluate the effectiveness of the intervention. The successful implementation of this project may have a major impact on the practice of critical care medicine. Reliable information on utilization of NPPV as well as analysis of reasons for underutilization will provide insight into ways of enhancing utilization. Educational programs designed to enhance practitioners' skills in implementing NPPV should lead to greater utilization and improved success rates. Optimal utilization of NPPV should lead to improved outcomes for patients with respiratory failure, more rational use of resources, and lower ICU costs for our health care system. Project A. Major Hypothesis: An educational intervention will increase utilization and success rates of NPPV in hospitals that currently underutilizing it. B. General Outline 1. Site selection 1. Select 8 sites that use NPPV in < 10% of patients receiving mechanical ventilatory assistance, based on a survey mailed to acute care hospitals in Massachusetts and Rhode Island during 2002. Sites will be selected based on: (i) willingness to participate (as per request of Respiratory Therapy director), (ii) > 30 mechanical ventilation initiations/month as reported in the survey, and (iii) n more than 90 minute drive from Boston. 2. Perform prospective evaluation of use of NPPV that will determine rate of utilization, technology used, patient diagnoses, duration of ventilator use and hospital stay, and success rates as recorded on case report forms. 3. Intervention (or control) phase. After completion of survey, provide education/in-servicing program to 5 randomly selected sites aimed at increasing knowledge and skill of physicians, nurses, and respiratory therapists in the use and implementation of NPPV. C. Evaluation phase 1. Re-survey targeted institutions with regard to use of NPPV and patient outcomes. Methods A. Prospective Survey at 8 Selected Institutions Underutilize NPPV 1. Random selection will be performed using computer-generated number sequence, selecting sites based on alphabetical listing. 2. Data will be gathered on CRFs that will document utilization of mechanical ventilation; number of NPPV starts; patient diagnoses; date, time, and location of NPPV use; equipment and settings used to ventilate; success rate of NPPV; duration of NPPV use; and eventual patient outcomes. 3. Data collectors from Tufts or respiratory therapists at each site will initiate CRF use. Personal health information will be de-identified by using study code numbers. The patient medical record number cross-referenced to the patient code will be kept on a separate list kept in a locked area, so that the patient's medical record can be located to retrieve missing data and recorded data can be verified. B. Education and In-Servicing Educational and in-servicing sessions will be provided to randomly selected underutilizing sites and will review guidelines provided in the literature by the PI (15,16) as well as other investigators (17). Grand rounds and other lecture venues for the physicians working in emergency and critical care settings will describe the skills needed to select patients who will benefit from the use of NPPV. Workshops for respiratory therapists will review patient selection, proper use of equipment, and monitoring and weaning techniques. In-servicing sessions for emergency and critical care nurses will review the rationale behind NPPV use and how to monitor patients who are placed on NPPV. At control sites, no intervention will be undertaken prior to the second data survey. C. Evaluation Phase Mechanical ventilation and NPPV utilization will be tracked with the same data gathering instruments used during the initial phase. Initial and follow-up data gathering will be staggered. The follow-up evaluation in the control group will be timed to correspond with follow-up in institutions receiving the intervention. Main Outcome Variables 1. Rate of NPPV utilization. 2. NPPV success. 3. Compliance with guidelines. Analysis The main outcome variables will be analyzed as categorical variables by chi square analysis or the Mann-Whitney test as appropriate. Initial data will be compared to follow-up data obtained during the follow-up phase using paired t-tests, Mann-Whitney tests, as appropriate. Comparisons between the intervention and control groups at baseline and follow-up will be made using unpaired t-tests or chi square analyses as appropriate. Because randomization is by site, data will be clustered by institution, although we will be limited by resources as to the number of sites in this study. Using linear regression analysis, we will be able to determine risk ratios for failure for a number of initial characteristics, including diagnosis, vital signs, blood gases, presence of cough and airway secretions, body mass index, sedation, kind of equipment used, in-hospital locations for NPPV implementation, and other characteristics. Anticipated Results We anticipate that results from the sites selected to receive the training intervention and control sites will be similar at baseline and that the intervention will increase utilization and success rates of NPPV compared to baseline. Utilization and training rates also may increase at control sites, because of an increased trend toward NPPV use in acute care settings. However, the important comparison will be between the intervention and control sites at follow-up. If intervention is effective, NPPV utilization and success rates will be increased at intervention sites compared to controls. Other key differences may be detectable, such as shorter ICU lengths of stay and reduced mortality rates among respiratory failure patients treated at the intervention sites. Risk/Benefit Analysis This is a prospective observational trial that involves no patient intervention. Patients are to be managed by their primary caregivers, and guidelines are provided to randomly selected institutions. These guidelines, derived from standards in the literature (15-17) aim to improve the outcomes of patients receiving NPPV. Because the trial is observational, involves no direct patient intervention, and poses essentially no direct risk to patients, we are requesting waiver of consent. The patient data that we are collecting aims to track standard clinical information and will be de-identified. Protection of Personal Health Information CRFs will be de-identified for the purposes of the study. CRFs will be kept in a locked office. A cross-referenced sheet containing medical record numbers and patient code numbers will be kept in a locked file until missing data are retrieved and data verified using chart review. Once the data set is complete and validated, the cross-referenced sheet will be shredded and discarded. Limitations, Potential Problems, and Strengths One limitation is that optimal utilization rates for NPPV in the acute care setting have not been established. In addition, overutilization (use in inappropriate candidates) at some centers is also a concern, as noted in the European survey (14). Although this project will focus on underutilization of NPPV, we will able to track evidence of inappropriate applications. Another concern is that there can be no blinding as to study condition at individual centers, introducing the possibility of center-based bias. Randomization of intervention and control centers should minimize this concern. The study also has several strengths. Compared to the European ICU survey that only included selected centers that had volunteered to serve in a consortium, this project will obtain information on NPPV use in all acute care centers in a geographic region, giving a more accurate glimpse of actual usage rates. In addition, the survey will provide information on reasons for under-utilization and the inclusion of an intervention will shed light on the effectiveness of strategies to enhance utilization. These results can then be applied to achieve more appropriate use of NPPV. The study might also provide insight into techniques that could also be applied to other critical care practices, such as use of particular ventilator settings for invasive mechanical ventilation, or use of certain pharmacological agents. References 1. Kramer N, Meyer TJ, Meharg J et al: Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med 1995; 151: 1799-1806. 2. Brochard L, Mancebo J, Wysocki M et al: Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1995; 333: 817-822. 3. Plant PK, Owen JL, and Elliott MW: Early use of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicenter randomized controlled trial. Lancet 2000; 355:1931-1935. 4. Masip J, Betbese AJ, Paez J, Vecilla F, Canizares R, Padro J, Paz Marco A, Otero J, Bllus J: Non-invasive pressure support ventilation versus conventional oxygen therapy in acute cardiogenic pulmonary oedema; a randomized study. Lancet 2000; 356:2126-2132. 5. Antonelli M, Conti G, Bufi M, Costa MG, Lappa A, Rocco M, Gasparetto M, Meduri GU: Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation. JAMA 2000, 283: 235-241. 6. Hilbert G, Gruson D, Vargas F, Valentino R, Gbikpi-Benissan G, Dupon M, Reiffers J, and Cardinaud JP. Noninvasive ventilation in Immunosuppressed patients with pulmonary infiltrates, and acute respiratory failure. N Engl J Med 2001; 344:481-487. 7. Nava S, Ambrosino N, Clini E, Prato M, Orlando G, et al. Non-invasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease: a randomized study. Ann Intern Med 1998; 128: 721-728. 8. Auriant I, Jallot A, Herve P, et al. Noninvasive ventilation reduces mortality in acute respiratory failure following lung resection. Am J Respir Crit Care Med 2001; 164: 1231-1235. 9. Meduri GU, Cook TR, Turner RE, Cohen M and Leeper KV. Noninvasive positive pressure ventilation in status asthmaticus. Chest 1996; 110: 767-774 10. Hodson ME, Madden BP, Steven MH et al. Noninvasive mechanical ventilation for cystic fibrosis patients - a potential bridge to transplantation. Eur Respir J 1991; 4: 524-527. 11. Confalonieri M, Potena A, Carbone G, Della Porta R, Tolley EA, and Meduri GU. Acute respiratory failure in patients with severe community-acquired pneumonia. Am J Respir Crit Care Med 1999, 160: 1585-1591. 12. Meduri GU, Fox RC, Abou-Shala N, et al. Noninvasive mechanical ventilation via face mask in patients with acute respiratory failure who refused endotracheal intubation. Crit Care Med 1994; 22: 1584-1590. 13. Bach JR, Brougher P, Hess DR et al. Consensus statement: Noninvasive positive pressure ventilation. Respir Care 1997; 42: 365-369. 6. 6. 14. Carlucci A, Richard J-C, Wysocki M, Lepage E, Brochard L. Noninvasive versus conventional mechanical ventilation: and epidemiological survey. Am J Respir Crit Care Med 2001; 163:874-880. 15. Criner GJ, Kreimer DT, Tomaselli M, Pierson W, and Evans D. Financial implications of noninvasive positive pressure ventilation (NPPV). Chest 1995; 108: 475-481. 16. Hill NS, ed. Noninvasive Positive Pressure Ventilation; Principles and Applications. Futura, Armonk, NY, 2001. 17. Sinuff T, Cook DJ, Randall J, Allen CJ. Evaluation of a practice guideline for noninvasive positive pressure ventilation for acute respiratory failure. Chest 2003; 123(6):2062-73. More... »

URL

https://clinicaltrials.gov/show/NCT00458926

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3177", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "description": "Non-invasive positive pressure ventilation (NIV) refers to the provision of mechanical ventilation without an artificial airway (for example, an endotracheal tube). Over the past decade, evidence from randomized control trials has accumulated to demonstrate effectiveness of the technique in avoiding intubation, reducing complications associated with intubation, shortening ICU and hospital lengths of stay, and reducing mortality rates in selected patients with acute respiratory failure. However, NIV is still underutilized at many medical centers. The purposes of this project will be to acquire information related to NIV use, to identify reasons for underutilization, to implement interventions that encourage more appropriate use of NIV, and to evaluate the effectiveness of the interventions. Reliable information on NIV use as well as analysis of reasons for underutilization will provide insight into ways of enhancing NIV use. We will determine utilization rate, technology used, patient diagnoses, duration of ventilator use and hospital stay, and success rates as recorded on case report forms (CRFs). After completing the survey, we will provide an educational program to randomly selected institutions (one-half of the total) aimed at increasing the knowledge and skill of physicians, nurses, and therapists regarding use and implementation of NIV. Data will be gathered for a second round with the same data-gathering instruments used during\n\nDetailed Description\nProject Focus The focus of this project is to improve the ventilatory management of patients with acute respiratory failure in the critical care setting by enhancing the use of non-invasive ventilation, a goal that should lead to improved outcomes and efficiency of care. Within the framework of the funding agency, the Chest Foundation, this proposal aims to promote the use of alternative therapies in treating patients with critical illness, educate practitioners, and disseminate new knowledge regarding the therapy. Background Non-invasive positive pressure ventilation (NPPV) provides mechanical ventilation without the need for airway invasion through the use of either nasal or oronasal masks (covering both the nose and mouth) attached to positive pressure ventilators. Published evidence from randomized control trials has demonstrated the effectiveness of the technique in avoiding intubation, reducing complications associated with intubation, shortening ICU and hospital lengths of stay, and reducing mortality rates in selected patients with acute respiratory failure. Randomized trials have demonstrated effectiveness in patients with acute exacerbations of COPD (1-3), cardiogenic pulmonary edema (4), immunocompromised patients with hypoxemic respiratory failure (5,6), facilitating the weaning process in patients ventilated invasively (7), and in patients who develop respiratory insufficiency after lung resection (8). In addition, evidence that is not quite as strong supports the use of NPPV in patients with acute asthma (9), cystic fibrosis (10), community-acquired pneumonia if there is underlying COPD (11), and patients with a do-not-intubate status (12). Based on this evidence, consensus groups have recommended the use of NPPV in treating patients with COPD exacerbations and for selected patients with other diagnoses (13). However, NPPV is still underutilized at many medical centers throughout the world (14) and it is fair to presume that many patients are being deprived of NPPV's advantages and that ICU resources are being wasted. Similar surveys have not been performed in the US, and my firm impression from polling audiences when I speak on this subject is that a similar proportion of US centers are not using NPPV. The purposes of this project are to acquire this information in a US setting, to identify reasons for underutilization, to implement interventions that encourage more appropriate use of NPPV, and then to evaluate the effectiveness of the intervention. The successful implementation of this project may have a major impact on the practice of critical care medicine. Reliable information on utilization of NPPV as well as analysis of reasons for underutilization will provide insight into ways of enhancing utilization. Educational programs designed to enhance practitioners' skills in implementing NPPV should lead to greater utilization and improved success rates. Optimal utilization of NPPV should lead to improved outcomes for patients with respiratory failure, more rational use of resources, and lower ICU costs for our health care system. Project A. Major Hypothesis: An educational intervention will increase utilization and success rates of NPPV in hospitals that currently underutilizing it. B. General Outline 1. Site selection 1. Select 8 sites that use NPPV in < 10% of patients receiving mechanical ventilatory assistance, based on a survey mailed to acute care hospitals in Massachusetts and Rhode Island during 2002. Sites will be selected based on: (i) willingness to participate (as per request of Respiratory Therapy director), (ii) > 30 mechanical ventilation initiations/month as reported in the survey, and (iii) n more than 90 minute drive from Boston. 2. Perform prospective evaluation of use of NPPV that will determine rate of utilization, technology used, patient diagnoses, duration of ventilator use and hospital stay, and success rates as recorded on case report forms. 3. Intervention (or control) phase. After completion of survey, provide education/in-servicing program to 5 randomly selected sites aimed at increasing knowledge and skill of physicians, nurses, and respiratory therapists in the use and implementation of NPPV. C. Evaluation phase 1. Re-survey targeted institutions with regard to use of NPPV and patient outcomes. Methods A. Prospective Survey at 8 Selected Institutions Underutilize NPPV 1. Random selection will be performed using computer-generated number sequence, selecting sites based on alphabetical listing. 2. Data will be gathered on CRFs that will document utilization of mechanical ventilation; number of NPPV starts; patient diagnoses; date, time, and location of NPPV use; equipment and settings used to ventilate; success rate of NPPV; duration of NPPV use; and eventual patient outcomes. 3. Data collectors from Tufts or respiratory therapists at each site will initiate CRF use. Personal health information will be de-identified by using study code numbers. The patient medical record number cross-referenced to the patient code will be kept on a separate list kept in a locked area, so that the patient's medical record can be located to retrieve missing data and recorded data can be verified. B. Education and In-Servicing Educational and in-servicing sessions will be provided to randomly selected underutilizing sites and will review guidelines provided in the literature by the PI (15,16) as well as other investigators (17). Grand rounds and other lecture venues for the physicians working in emergency and critical care settings will describe the skills needed to select patients who will benefit from the use of NPPV. Workshops for respiratory therapists will review patient selection, proper use of equipment, and monitoring and weaning techniques. In-servicing sessions for emergency and critical care nurses will review the rationale behind NPPV use and how to monitor patients who are placed on NPPV. At control sites, no intervention will be undertaken prior to the second data survey. C. Evaluation Phase Mechanical ventilation and NPPV utilization will be tracked with the same data gathering instruments used during the initial phase. Initial and follow-up data gathering will be staggered. The follow-up evaluation in the control group will be timed to correspond with follow-up in institutions receiving the intervention. Main Outcome Variables 1. Rate of NPPV utilization. 2. NPPV success. 3. Compliance with guidelines. Analysis The main outcome variables will be analyzed as categorical variables by chi square analysis or the Mann-Whitney test as appropriate. Initial data will be compared to follow-up data obtained during the follow-up phase using paired t-tests, Mann-Whitney tests, as appropriate. Comparisons between the intervention and control groups at baseline and follow-up will be made using unpaired t-tests or chi square analyses as appropriate. Because randomization is by site, data will be clustered by institution, although we will be limited by resources as to the number of sites in this study. Using linear regression analysis, we will be able to determine risk ratios for failure for a number of initial characteristics, including diagnosis, vital signs, blood gases, presence of cough and airway secretions, body mass index, sedation, kind of equipment used, in-hospital locations for NPPV implementation, and other characteristics. Anticipated Results We anticipate that results from the sites selected to receive the training intervention and control sites will be similar at baseline and that the intervention will increase utilization and success rates of NPPV compared to baseline. Utilization and training rates also may increase at control sites, because of an increased trend toward NPPV use in acute care settings. However, the important comparison will be between the intervention and control sites at follow-up. If intervention is effective, NPPV utilization and success rates will be increased at intervention sites compared to controls. Other key differences may be detectable, such as shorter ICU lengths of stay and reduced mortality rates among respiratory failure patients treated at the intervention sites. Risk/Benefit Analysis This is a prospective observational trial that involves no patient intervention. Patients are to be managed by their primary caregivers, and guidelines are provided to randomly selected institutions. These guidelines, derived from standards in the literature (15-17) aim to improve the outcomes of patients receiving NPPV. Because the trial is observational, involves no direct patient intervention, and poses essentially no direct risk to patients, we are requesting waiver of consent. The patient data that we are collecting aims to track standard clinical information and will be de-identified. Protection of Personal Health Information CRFs will be de-identified for the purposes of the study. CRFs will be kept in a locked office. A cross-referenced sheet containing medical record numbers and patient code numbers will be kept in a locked file until missing data are retrieved and data verified using chart review. Once the data set is complete and validated, the cross-referenced sheet will be shredded and discarded. Limitations, Potential Problems, and Strengths One limitation is that optimal utilization rates for NPPV in the acute care setting have not been established. In addition, overutilization (use in inappropriate candidates) at some centers is also a concern, as noted in the European survey (14). Although this project will focus on underutilization of NPPV, we will able to track evidence of inappropriate applications. Another concern is that there can be no blinding as to study condition at individual centers, introducing the possibility of center-based bias. Randomization of intervention and control centers should minimize this concern. The study also has several strengths. Compared to the European ICU survey that only included selected centers that had volunteered to serve in a consortium, this project will obtain information on NPPV use in all acute care centers in a geographic region, giving a more accurate glimpse of actual usage rates. In addition, the survey will provide information on reasons for under-utilization and the inclusion of an intervention will shed light on the effectiveness of strategies to enhance utilization. These results can then be applied to achieve more appropriate use of NPPV. The study might also provide insight into techniques that could also be applied to other critical care practices, such as use of particular ventilator settings for invasive mechanical ventilation, or use of certain pharmacological agents. References 1. Kramer N, Meyer TJ, Meharg J et al: Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med 1995; 151: 1799-1806. 2. Brochard L, Mancebo J, Wysocki M et al: Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1995; 333: 817-822. 3. Plant PK, Owen JL, and Elliott MW: Early use of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicenter randomized controlled trial. Lancet 2000; 355:1931-1935. 4. Masip J, Betbese AJ, Paez J, Vecilla F, Canizares R, Padro J, Paz Marco A, Otero J, Bllus J: Non-invasive pressure support ventilation versus conventional oxygen therapy in acute cardiogenic pulmonary oedema; a randomized study. Lancet 2000; 356:2126-2132. 5. Antonelli M, Conti G, Bufi M, Costa MG, Lappa A, Rocco M, Gasparetto M, Meduri GU: Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation. JAMA 2000, 283: 235-241. 6. Hilbert G, Gruson D, Vargas F, Valentino R, Gbikpi-Benissan G, Dupon M, Reiffers J, and Cardinaud JP. Noninvasive ventilation in Immunosuppressed patients with pulmonary infiltrates, and acute respiratory failure. N Engl J Med 2001; 344:481-487. 7. Nava S, Ambrosino N, Clini E, Prato M, Orlando G, et al. Non-invasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease: a randomized study. Ann Intern Med 1998; 128: 721-728. 8. Auriant I, Jallot A, Herve P, et al. Noninvasive ventilation reduces mortality in acute respiratory failure following lung resection. Am J Respir Crit Care Med 2001; 164: 1231-1235. 9. Meduri GU, Cook TR, Turner RE, Cohen M and Leeper KV. Noninvasive positive pressure ventilation in status asthmaticus. Chest 1996; 110: 767-774 10. Hodson ME, Madden BP, Steven MH et al. Noninvasive mechanical ventilation for cystic fibrosis patients - a potential bridge to transplantation. Eur Respir J 1991; 4: 524-527. 11. Confalonieri M, Potena A, Carbone G, Della Porta R, Tolley EA, and Meduri GU. Acute respiratory failure in patients with severe community-acquired pneumonia. Am J Respir Crit Care Med 1999, 160: 1585-1591. 12. Meduri GU, Fox RC, Abou-Shala N, et al. Noninvasive mechanical ventilation via face mask in patients with acute respiratory failure who refused endotracheal intubation. Crit Care Med 1994; 22: 1584-1590. 13. Bach JR, Brougher P, Hess DR et al. Consensus statement: Noninvasive positive pressure ventilation. Respir Care 1997; 42: 365-369. 6. 6. 14. Carlucci A, Richard J-C, Wysocki M, Lepage E, Brochard L. Noninvasive versus conventional mechanical ventilation: and epidemiological survey. Am J Respir Crit Care Med 2001; 163:874-880. 15. Criner GJ, Kreimer DT, Tomaselli M, Pierson W, and Evans D. Financial implications of noninvasive positive pressure ventilation (NPPV). Chest 1995; 108: 475-481. 16. Hill NS, ed. Noninvasive Positive Pressure Ventilation; Principles and Applications. Futura, Armonk, NY, 2001. 17. Sinuff T, Cook DJ, Randall J, Allen CJ. Evaluation of a practice guideline for noninvasive positive pressure ventilation for acute respiratory failure. Chest 2003; 123(6):2062-73.", 
    "endDate": "2019-12-01T00:00:00Z", 
    "id": "sg:clinicaltrial.NCT00458926", 
    "keywords": [
      "utilization", 
      "non-invasive positive pressure ventilation", 
      "critical care", 
      "provision", 
      "Artificial Respiration", 
      "airway", 
      "endotracheal tube", 
      "past decade", 
      "evidence", 
      "randomized control trial", 
      "effectiveness", 
      "technique", 
      "intubation", 
      "complication", 
      "ICU", 
      "hospital length", 
      "mortality", 
      "selected patient", 
      "acute respiratory failure", 
      "medical center", 
      "underutilization", 
      "implement intervention", 
      "appropriate use", 
      "intervention", 
      "utilization rate", 
      "technology", 
      "diagnosise", 
      "duration", 
      "hospital", 
      "success rate", 
      "Case Report", 
      "Data Collection", 
      "educational program", 
      "selected institution", 
      "one-half", 
      "skill", 
      "physician", 
      "nurse", 
      "therapist", 
      "implementation", 
      "second round", 
      "data gathering", 
      "detailed description", 
      "management", 
      "patient", 
      "critical care setting", 
      "Noninvasive Ventilation", 
      "improved outcome", 
      "efficiency", 
      "care", 
      "funding agency", 
      "foundation", 
      "Complementary Therapy", 
      "critical illness", 
      "practitioner", 
      "disseminate", 
      "therapy", 
      "invasion", 
      "nose", 
      "mouth", 
      "positive pressure", 
      "published evidence", 
      "randomized trial", 
      "acute exacerbation", 
      "chronic obstructive pulmonary disease", 
      "pulmonary edema", 
      "Immunocompromised Host", 
      "failure", 
      "weaning", 
      "Respiratory Insufficiency", 
      "lung resection", 
      "acute asthma", 
      "cystic fibrosis", 
      "community-acquired pneumonia", 
      "status", 
      "consensus", 
      "COPD exacerbation", 
      "world", 
      "presume", 
      "advantage", 
      "US", 
      "impression", 
      "audience", 
      "similar proportion", 
      "setting", 
      "successful implementation", 
      "major impact", 
      "practice", 
      "Critical Care Medicine", 
      "great utilization", 
      "optimal utilization", 
      "rational use", 
      "Health Resource", 
      "Delivery of Health Care", 
      "major hypothesis", 
      "educational intervention", 
      "increase utilization", 
      "outline", 
      "selection", 
      "assistance", 
      "acute care hospital", 
      "Rhode Island", 
      "willingness", 
      "request", 
      "Respiratory Therapy", 
      "Boston", 
      "prospective evaluation", 
      "control", 
      "completion", 
      "selected site", 
      "respiratory therapist", 
      "evaluation phase", 
      "institution", 
      "patient outcome", 
      "method", 
      "random selection", 
      "computer", 
      "listing", 
      "date", 
      "location", 
      "Equipment and Supply", 
      "data collector", 
      "tuft", 
      "personal health information", 
      "patient medical record", 
      "list", 
      "medical record", 
      "recorded data", 
      "Education", 
      "servicing", 
      "guideline", 
      "grand round", 
      "venue", 
      "emergency", 
      "select patient", 
      "Patient Selection", 
      "proper use", 
      "review", 
      "rationale", 
      "control site", 
      "initial phase", 
      "follow-up data", 
      "follow-up evaluation", 
      "control group", 
      "outcome variable", 
      "compliance", 
      "categorical variable", 
      "chi-square analysis", 
      "initial data", 
      "follow-up phase", 
      "paired t-tests", 
      "Whitney", 
      "comparison", 
      "baseline", 
      "t-tests", 
      "Random Allocation", 
      "linear regression analysis", 
      "odds ratio", 
      "characteristic", 
      "diagnosis", 
      "vital sign", 
      "blood gas", 
      "cough", 
      "airway secretion", 
      "body mass index", 
      "sedation", 
      "anticipated result", 
      "training intervention", 
      "trend", 
      "acute care setting", 
      "important comparison", 
      "intervention site", 
      "key difference", 
      "reduced mortality", 
      "trial", 
      "patient intervention", 
      "primary caregiver", 
      "risk", 
      "waiver", 
      "consent", 
      "patient data", 
      "clinical information", 
      "protection", 
      "office", 
      "sheet", 
      "chart review", 
      "Dataset", 
      "limitation", 
      "potential problem", 
      "study condition", 
      "individual center", 
      "possibility", 
      "bias", 
      "control center", 
      "consortium", 
      "care center", 
      "geographic region", 
      "glimpse", 
      "usage", 
      "under-utilization", 
      "inclusion", 
      "light", 
      "ventilation", 
      "pharmacological agent", 
      "reference 1", 
      "Kramer", 
      "Meyer", 
      "prospective trial", 
      "AM", 
      "N Engl", 
      "plant", 
      "owen", 
      "Elliott", 
      "early use", 
      "ward", 
      "multicenter", 
      "aj", 
      "MARCO", 
      "pressure", 
      "oxygen therapy", 
      "randomized study", 
      "Costa", 
      "GUS", 
      "solid organ transplantation", 
      "JAMA", 
      "Hilbert", 
      "JP", 
      "immunosuppressed patient", 
      "infiltrate", 
      "Orlando", 
      "intern", 
      "Cook", 
      "Turner", 
      "Cohen", 
      "Kv", 
      "ME", 
      "BP", 
      "Steven", 
      "cystic fibrosis patient", 
      "bridge", 
      "transplantation", 
      "Eur", 
      "DELLAs", 
      "EA", 
      "fox", 
      "face", 
      "Intratracheal Intubation", 
      "Jr", 
      "HESS", 
      "consensus statement", 
      "Richard", 
      "epidemiological survey", 
      "GJ", 
      "DT", 
      "financial implication", 
      "hill", 
      "ED", 
      "principle", 
      "NY", 
      "Allen", 
      "Evaluation Study as Topic", 
      "practice guideline"
    ], 
    "name": "Enhancing Utilization of Non-Invasive Positive Pressure Ventilation in Critical Care", 
    "sameAs": [
      "https://app.dimensions.ai/details/clinical_trial/NCT00458926"
    ], 
    "sdDataset": "clinical_trials", 
    "sdDatePublished": "2019-03-07T15:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "file:///pack/app/us_ct_data_00003.json", 
    "sponsor": [
      {
        "id": "https://www.grid.ac/institutes/grid.67033.31", 
        "type": "Organization"
      }
    ], 
    "startDate": "2003-11-01T00:00:00Z", 
    "subjectOf": [
      {
        "id": "https://doi.org/10.1378/chest.13-1707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031278417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00408-015-9766-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043279833", 
          "https://doi.org/10.1007/s00408-015-9766-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4187/respcare.03966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072348591"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "type": "MedicalStudy", 
    "url": "https://clinicaltrials.gov/show/NCT00458926"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/clinicaltrial.NCT00458926'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/clinicaltrial.NCT00458926'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/clinicaltrial.NCT00458926'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/clinicaltrial.NCT00458926'


 

This table displays all metadata directly associated to this object as RDF triples.

291 TRIPLES      16 PREDICATES      280 URIs      271 LITERALS      1 BLANK NODES

Subject Predicate Object
1 sg:clinicaltrial.NCT00458926 schema:about anzsrc-for:3177
2 schema:description Non-invasive positive pressure ventilation (NIV) refers to the provision of mechanical ventilation without an artificial airway (for example, an endotracheal tube). Over the past decade, evidence from randomized control trials has accumulated to demonstrate effectiveness of the technique in avoiding intubation, reducing complications associated with intubation, shortening ICU and hospital lengths of stay, and reducing mortality rates in selected patients with acute respiratory failure. However, NIV is still underutilized at many medical centers. The purposes of this project will be to acquire information related to NIV use, to identify reasons for underutilization, to implement interventions that encourage more appropriate use of NIV, and to evaluate the effectiveness of the interventions. Reliable information on NIV use as well as analysis of reasons for underutilization will provide insight into ways of enhancing NIV use. We will determine utilization rate, technology used, patient diagnoses, duration of ventilator use and hospital stay, and success rates as recorded on case report forms (CRFs). After completing the survey, we will provide an educational program to randomly selected institutions (one-half of the total) aimed at increasing the knowledge and skill of physicians, nurses, and therapists regarding use and implementation of NIV. Data will be gathered for a second round with the same data-gathering instruments used during Detailed Description Project Focus The focus of this project is to improve the ventilatory management of patients with acute respiratory failure in the critical care setting by enhancing the use of non-invasive ventilation, a goal that should lead to improved outcomes and efficiency of care. Within the framework of the funding agency, the Chest Foundation, this proposal aims to promote the use of alternative therapies in treating patients with critical illness, educate practitioners, and disseminate new knowledge regarding the therapy. Background Non-invasive positive pressure ventilation (NPPV) provides mechanical ventilation without the need for airway invasion through the use of either nasal or oronasal masks (covering both the nose and mouth) attached to positive pressure ventilators. Published evidence from randomized control trials has demonstrated the effectiveness of the technique in avoiding intubation, reducing complications associated with intubation, shortening ICU and hospital lengths of stay, and reducing mortality rates in selected patients with acute respiratory failure. Randomized trials have demonstrated effectiveness in patients with acute exacerbations of COPD (1-3), cardiogenic pulmonary edema (4), immunocompromised patients with hypoxemic respiratory failure (5,6), facilitating the weaning process in patients ventilated invasively (7), and in patients who develop respiratory insufficiency after lung resection (8). In addition, evidence that is not quite as strong supports the use of NPPV in patients with acute asthma (9), cystic fibrosis (10), community-acquired pneumonia if there is underlying COPD (11), and patients with a do-not-intubate status (12). Based on this evidence, consensus groups have recommended the use of NPPV in treating patients with COPD exacerbations and for selected patients with other diagnoses (13). However, NPPV is still underutilized at many medical centers throughout the world (14) and it is fair to presume that many patients are being deprived of NPPV's advantages and that ICU resources are being wasted. Similar surveys have not been performed in the US, and my firm impression from polling audiences when I speak on this subject is that a similar proportion of US centers are not using NPPV. The purposes of this project are to acquire this information in a US setting, to identify reasons for underutilization, to implement interventions that encourage more appropriate use of NPPV, and then to evaluate the effectiveness of the intervention. The successful implementation of this project may have a major impact on the practice of critical care medicine. Reliable information on utilization of NPPV as well as analysis of reasons for underutilization will provide insight into ways of enhancing utilization. Educational programs designed to enhance practitioners' skills in implementing NPPV should lead to greater utilization and improved success rates. Optimal utilization of NPPV should lead to improved outcomes for patients with respiratory failure, more rational use of resources, and lower ICU costs for our health care system. Project A. Major Hypothesis: An educational intervention will increase utilization and success rates of NPPV in hospitals that currently underutilizing it. B. General Outline 1. Site selection 1. Select 8 sites that use NPPV in < 10% of patients receiving mechanical ventilatory assistance, based on a survey mailed to acute care hospitals in Massachusetts and Rhode Island during 2002. Sites will be selected based on: (i) willingness to participate (as per request of Respiratory Therapy director), (ii) > 30 mechanical ventilation initiations/month as reported in the survey, and (iii) n more than 90 minute drive from Boston. 2. Perform prospective evaluation of use of NPPV that will determine rate of utilization, technology used, patient diagnoses, duration of ventilator use and hospital stay, and success rates as recorded on case report forms. 3. Intervention (or control) phase. After completion of survey, provide education/in-servicing program to 5 randomly selected sites aimed at increasing knowledge and skill of physicians, nurses, and respiratory therapists in the use and implementation of NPPV. C. Evaluation phase 1. Re-survey targeted institutions with regard to use of NPPV and patient outcomes. Methods A. Prospective Survey at 8 Selected Institutions Underutilize NPPV 1. Random selection will be performed using computer-generated number sequence, selecting sites based on alphabetical listing. 2. Data will be gathered on CRFs that will document utilization of mechanical ventilation; number of NPPV starts; patient diagnoses; date, time, and location of NPPV use; equipment and settings used to ventilate; success rate of NPPV; duration of NPPV use; and eventual patient outcomes. 3. Data collectors from Tufts or respiratory therapists at each site will initiate CRF use. Personal health information will be de-identified by using study code numbers. The patient medical record number cross-referenced to the patient code will be kept on a separate list kept in a locked area, so that the patient's medical record can be located to retrieve missing data and recorded data can be verified. B. Education and In-Servicing Educational and in-servicing sessions will be provided to randomly selected underutilizing sites and will review guidelines provided in the literature by the PI (15,16) as well as other investigators (17). Grand rounds and other lecture venues for the physicians working in emergency and critical care settings will describe the skills needed to select patients who will benefit from the use of NPPV. Workshops for respiratory therapists will review patient selection, proper use of equipment, and monitoring and weaning techniques. In-servicing sessions for emergency and critical care nurses will review the rationale behind NPPV use and how to monitor patients who are placed on NPPV. At control sites, no intervention will be undertaken prior to the second data survey. C. Evaluation Phase Mechanical ventilation and NPPV utilization will be tracked with the same data gathering instruments used during the initial phase. Initial and follow-up data gathering will be staggered. The follow-up evaluation in the control group will be timed to correspond with follow-up in institutions receiving the intervention. Main Outcome Variables 1. Rate of NPPV utilization. 2. NPPV success. 3. Compliance with guidelines. Analysis The main outcome variables will be analyzed as categorical variables by chi square analysis or the Mann-Whitney test as appropriate. Initial data will be compared to follow-up data obtained during the follow-up phase using paired t-tests, Mann-Whitney tests, as appropriate. Comparisons between the intervention and control groups at baseline and follow-up will be made using unpaired t-tests or chi square analyses as appropriate. Because randomization is by site, data will be clustered by institution, although we will be limited by resources as to the number of sites in this study. Using linear regression analysis, we will be able to determine risk ratios for failure for a number of initial characteristics, including diagnosis, vital signs, blood gases, presence of cough and airway secretions, body mass index, sedation, kind of equipment used, in-hospital locations for NPPV implementation, and other characteristics. Anticipated Results We anticipate that results from the sites selected to receive the training intervention and control sites will be similar at baseline and that the intervention will increase utilization and success rates of NPPV compared to baseline. Utilization and training rates also may increase at control sites, because of an increased trend toward NPPV use in acute care settings. However, the important comparison will be between the intervention and control sites at follow-up. If intervention is effective, NPPV utilization and success rates will be increased at intervention sites compared to controls. Other key differences may be detectable, such as shorter ICU lengths of stay and reduced mortality rates among respiratory failure patients treated at the intervention sites. Risk/Benefit Analysis This is a prospective observational trial that involves no patient intervention. Patients are to be managed by their primary caregivers, and guidelines are provided to randomly selected institutions. These guidelines, derived from standards in the literature (15-17) aim to improve the outcomes of patients receiving NPPV. Because the trial is observational, involves no direct patient intervention, and poses essentially no direct risk to patients, we are requesting waiver of consent. The patient data that we are collecting aims to track standard clinical information and will be de-identified. Protection of Personal Health Information CRFs will be de-identified for the purposes of the study. CRFs will be kept in a locked office. A cross-referenced sheet containing medical record numbers and patient code numbers will be kept in a locked file until missing data are retrieved and data verified using chart review. Once the data set is complete and validated, the cross-referenced sheet will be shredded and discarded. Limitations, Potential Problems, and Strengths One limitation is that optimal utilization rates for NPPV in the acute care setting have not been established. In addition, overutilization (use in inappropriate candidates) at some centers is also a concern, as noted in the European survey (14). Although this project will focus on underutilization of NPPV, we will able to track evidence of inappropriate applications. Another concern is that there can be no blinding as to study condition at individual centers, introducing the possibility of center-based bias. Randomization of intervention and control centers should minimize this concern. The study also has several strengths. Compared to the European ICU survey that only included selected centers that had volunteered to serve in a consortium, this project will obtain information on NPPV use in all acute care centers in a geographic region, giving a more accurate glimpse of actual usage rates. In addition, the survey will provide information on reasons for under-utilization and the inclusion of an intervention will shed light on the effectiveness of strategies to enhance utilization. These results can then be applied to achieve more appropriate use of NPPV. The study might also provide insight into techniques that could also be applied to other critical care practices, such as use of particular ventilator settings for invasive mechanical ventilation, or use of certain pharmacological agents. References 1. Kramer N, Meyer TJ, Meharg J et al: Randomized, prospective trial of noninvasive positive pressure ventilation in acute respiratory failure. Am J Respir Crit Care Med 1995; 151: 1799-1806. 2. Brochard L, Mancebo J, Wysocki M et al: Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N Engl J Med 1995; 333: 817-822. 3. Plant PK, Owen JL, and Elliott MW: Early use of noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicenter randomized controlled trial. Lancet 2000; 355:1931-1935. 4. Masip J, Betbese AJ, Paez J, Vecilla F, Canizares R, Padro J, Paz Marco A, Otero J, Bllus J: Non-invasive pressure support ventilation versus conventional oxygen therapy in acute cardiogenic pulmonary oedema; a randomized study. Lancet 2000; 356:2126-2132. 5. Antonelli M, Conti G, Bufi M, Costa MG, Lappa A, Rocco M, Gasparetto M, Meduri GU: Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation. JAMA 2000, 283: 235-241. 6. Hilbert G, Gruson D, Vargas F, Valentino R, Gbikpi-Benissan G, Dupon M, Reiffers J, and Cardinaud JP. Noninvasive ventilation in Immunosuppressed patients with pulmonary infiltrates, and acute respiratory failure. N Engl J Med 2001; 344:481-487. 7. Nava S, Ambrosino N, Clini E, Prato M, Orlando G, et al. Non-invasive mechanical ventilation in the weaning of patients with respiratory failure due to chronic obstructive pulmonary disease: a randomized study. Ann Intern Med 1998; 128: 721-728. 8. Auriant I, Jallot A, Herve P, et al. Noninvasive ventilation reduces mortality in acute respiratory failure following lung resection. Am J Respir Crit Care Med 2001; 164: 1231-1235. 9. Meduri GU, Cook TR, Turner RE, Cohen M and Leeper KV. Noninvasive positive pressure ventilation in status asthmaticus. Chest 1996; 110: 767-774 10. Hodson ME, Madden BP, Steven MH et al. Noninvasive mechanical ventilation for cystic fibrosis patients - a potential bridge to transplantation. Eur Respir J 1991; 4: 524-527. 11. Confalonieri M, Potena A, Carbone G, Della Porta R, Tolley EA, and Meduri GU. Acute respiratory failure in patients with severe community-acquired pneumonia. Am J Respir Crit Care Med 1999, 160: 1585-1591. 12. Meduri GU, Fox RC, Abou-Shala N, et al. Noninvasive mechanical ventilation via face mask in patients with acute respiratory failure who refused endotracheal intubation. Crit Care Med 1994; 22: 1584-1590. 13. Bach JR, Brougher P, Hess DR et al. Consensus statement: Noninvasive positive pressure ventilation. Respir Care 1997; 42: 365-369. 6. 6. 14. Carlucci A, Richard J-C, Wysocki M, Lepage E, Brochard L. Noninvasive versus conventional mechanical ventilation: and epidemiological survey. Am J Respir Crit Care Med 2001; 163:874-880. 15. Criner GJ, Kreimer DT, Tomaselli M, Pierson W, and Evans D. Financial implications of noninvasive positive pressure ventilation (NPPV). Chest 1995; 108: 475-481. 16. Hill NS, ed. Noninvasive Positive Pressure Ventilation; Principles and Applications. Futura, Armonk, NY, 2001. 17. Sinuff T, Cook DJ, Randall J, Allen CJ. Evaluation of a practice guideline for noninvasive positive pressure ventilation for acute respiratory failure. Chest 2003; 123(6):2062-73.
3 schema:endDate 2019-12-01T00:00:00Z
4 schema:keywords AM
5 Allen
6 Artificial Respiration
7 BP
8 Boston
9 COPD exacerbation
10 Case Report
11 Cohen
12 Complementary Therapy
13 Cook
14 Costa
15 Critical Care Medicine
16 DELLAs
17 DT
18 Data Collection
19 Dataset
20 Delivery of Health Care
21 EA
22 ED
23 Education
24 Elliott
25 Equipment and Supply
26 Eur
27 Evaluation Study as Topic
28 GJ
29 GUS
30 HESS
31 Health Resource
32 Hilbert
33 ICU
34 Immunocompromised Host
35 Intratracheal Intubation
36 JAMA
37 JP
38 Jr
39 Kramer
40 Kv
41 MARCO
42 ME
43 Meyer
44 N Engl
45 NY
46 Noninvasive Ventilation
47 Orlando
48 Patient Selection
49 Random Allocation
50 Respiratory Insufficiency
51 Respiratory Therapy
52 Rhode Island
53 Richard
54 Steven
55 Turner
56 US
57 Whitney
58 acute asthma
59 acute care hospital
60 acute care setting
61 acute exacerbation
62 acute respiratory failure
63 advantage
64 airway
65 airway secretion
66 aj
67 anticipated result
68 appropriate use
69 assistance
70 audience
71 baseline
72 bias
73 blood gas
74 body mass index
75 bridge
76 care
77 care center
78 categorical variable
79 characteristic
80 chart review
81 chi-square analysis
82 chronic obstructive pulmonary disease
83 clinical information
84 community-acquired pneumonia
85 comparison
86 completion
87 compliance
88 complication
89 computer
90 consensus
91 consensus statement
92 consent
93 consortium
94 control
95 control center
96 control group
97 control site
98 cough
99 critical care
100 critical care setting
101 critical illness
102 cystic fibrosis
103 cystic fibrosis patient
104 data collector
105 data gathering
106 date
107 detailed description
108 diagnosis
109 diagnosise
110 disseminate
111 duration
112 early use
113 educational intervention
114 educational program
115 effectiveness
116 efficiency
117 emergency
118 endotracheal tube
119 epidemiological survey
120 evaluation phase
121 evidence
122 face
123 failure
124 financial implication
125 follow-up data
126 follow-up evaluation
127 follow-up phase
128 foundation
129 fox
130 funding agency
131 geographic region
132 glimpse
133 grand round
134 great utilization
135 guideline
136 hill
137 hospital
138 hospital length
139 immunosuppressed patient
140 implement intervention
141 implementation
142 important comparison
143 impression
144 improved outcome
145 inclusion
146 increase utilization
147 individual center
148 infiltrate
149 initial data
150 initial phase
151 institution
152 intern
153 intervention
154 intervention site
155 intubation
156 invasion
157 key difference
158 light
159 limitation
160 linear regression analysis
161 list
162 listing
163 location
164 lung resection
165 major hypothesis
166 major impact
167 management
168 medical center
169 medical record
170 method
171 mortality
172 mouth
173 multicenter
174 non-invasive positive pressure ventilation
175 nose
176 nurse
177 odds ratio
178 office
179 one-half
180 optimal utilization
181 outcome variable
182 outline
183 owen
184 oxygen therapy
185 paired t-tests
186 past decade
187 patient
188 patient data
189 patient intervention
190 patient medical record
191 patient outcome
192 personal health information
193 pharmacological agent
194 physician
195 plant
196 positive pressure
197 possibility
198 potential problem
199 practice
200 practice guideline
201 practitioner
202 pressure
203 presume
204 primary caregiver
205 principle
206 proper use
207 prospective evaluation
208 prospective trial
209 protection
210 provision
211 published evidence
212 pulmonary edema
213 random selection
214 randomized control trial
215 randomized study
216 randomized trial
217 rational use
218 rationale
219 recorded data
220 reduced mortality
221 reference 1
222 request
223 respiratory therapist
224 review
225 risk
226 second round
227 sedation
228 select patient
229 selected institution
230 selected patient
231 selected site
232 selection
233 servicing
234 setting
235 sheet
236 similar proportion
237 skill
238 solid organ transplantation
239 status
240 study condition
241 success rate
242 successful implementation
243 t-tests
244 technique
245 technology
246 therapist
247 therapy
248 training intervention
249 transplantation
250 trend
251 trial
252 tuft
253 under-utilization
254 underutilization
255 usage
256 utilization
257 utilization rate
258 ventilation
259 venue
260 vital sign
261 waiver
262 ward
263 weaning
264 willingness
265 world
266 schema:name Enhancing Utilization of Non-Invasive Positive Pressure Ventilation in Critical Care
267 schema:sameAs https://app.dimensions.ai/details/clinical_trial/NCT00458926
268 schema:sdDatePublished 2019-03-07T15:22
269 schema:sdLicense https://scigraph.springernature.com/explorer/license/
270 schema:sdPublisher Ne1171e9f5164433d82637317e676695d
271 schema:sponsor https://www.grid.ac/institutes/grid.67033.31
272 schema:startDate 2003-11-01T00:00:00Z
273 schema:subjectOf sg:pub.10.1007/s00408-015-9766-y
274 https://doi.org/10.1378/chest.13-1707
275 https://doi.org/10.4187/respcare.03966
276 schema:url https://clinicaltrials.gov/show/NCT00458926
277 sgo:license sg:explorer/license/
278 sgo:sdDataset clinical_trials
279 rdf:type schema:MedicalStudy
280 Ne1171e9f5164433d82637317e676695d schema:name Springer Nature - SN SciGraph project
281 rdf:type schema:Organization
282 anzsrc-for:3177 schema:inDefinedTermSet anzsrc-for:
283 rdf:type schema:DefinedTerm
284 sg:pub.10.1007/s00408-015-9766-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043279833
285 https://doi.org/10.1007/s00408-015-9766-y
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1378/chest.13-1707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031278417
288 rdf:type schema:CreativeWork
289 https://doi.org/10.4187/respcare.03966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072348591
290 rdf:type schema:CreativeWork
291 https://www.grid.ac/institutes/grid.67033.31 schema:Organization
 




Preview window. Press ESC to close (or click here)


...